Graph transformers have recently received significant attention in graph learning, partly due to their ability to capture more global interaction via self-attention. Nevertheless, while higher-order graph neural networks have been reasonably well studied, the exploration of extending graph transformers to higher-order variants is just starting. Both theoretical understanding and empirical results are limited. In this paper, we provide a systematic study of the theoretical expressive power of order-$k$ graph transformers and sparse variants. We first show that, an order-$k$ graph transformer without additional structural information is less expressive than the $k$-Weisfeiler Lehman ($k$-WL) test despite its high computational cost. We then explore strategies to both sparsify and enhance the higher-order graph transformers, aiming to improve both their efficiency and expressiveness. Indeed, sparsification based on neighborhood information can enhance the expressive power, as it provides additional information about input graph structures. In particular, we show that a natural neighborhood-based sparse order-$k$ transformer model is not only computationally efficient, but also expressive -- as expressive as $k$-WL test. We further study several other sparse graph attention models that are computationally efficient and provide their expressiveness analysis. Finally, we provide experimental results to show the effectiveness of the different sparsification strategies.
The curse-of-dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high-dimensional PDEs, as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerically partial differential equations (PDEs) in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics-informed neural networks (PINNs) to solve arbitrary high-dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high-dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr\"{o}dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh-free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in 100,000 effective dimensions in 12 hours on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high-dimensional PDEs.
We define a graph-based rate optimization problem and consider its computation, which provides a unified approach to the computation of various theoretical limits, such as the (conditional) graph entropy, rate-distortion functions and capacity-cost functions with two-sided information. Our contributions are twofold. On the theoretical side, we simplify the graph-based problem by constructing explicit graph contractions in some special cases. These efforts reduce the number of decision variables in the optimization problem. Graph characterizations for rate-distortion and capacity-cost functions with two-sided information are simplified by specializing the results. On the computational side, we design an alternating minimization algorithm for the graph-based problem, which deals with the inequality constraint by a flexible multiplier update strategy. Moreover, deflation techniques are introduced, so that the computing time can be largely reduced. Theoretical analysis shows that the algorithm converges to an optimal solution. The accuracy and efficiency of the algorithm are illustrated by numerical experiments.
Compositionality in language models presents a problem when processing idiomatic expressions, as their meaning often cannot be directly derived from their individual parts. Although fine-tuning and other optimization strategies can be used to improve representations of idiomatic expressions, this depends on the availability of relevant data. We present the Noun Compound Synonym Substitution in Books - NCSSB - datasets, which are created by substitution of synonyms of potentially idiomatic English noun compounds in public domain book texts. We explore the trade-off between data quantity and quality when training models for idiomaticity detection, in conjunction with contextual information obtained locally (from the surrounding sentences) or externally (through language resources). Performance on an idiomaticity detection task indicates that dataset quality is a stronger factor for context-enriched models, but that quantity also plays a role in models without context inclusion strategies.
Since the introduction of the Kolmogorov complexity of binary sequences in the 1960s, there have been significant advancements in the topic of complexity measures for randomness assessment, which are of fundamental importance in theoretical computer science and of practical interest in cryptography. This survey reviews notable research from the past four decades on the linear, quadratic and maximum-order complexities of pseudo-random sequences and their relations with Lempel-Ziv complexity, expansion complexity, 2-adic complexity, and correlation measures.
Rerunning a metric-based evaluation should be more straightforward, and results should be closer, than in a human-based evaluation, especially where code and model checkpoints are made available by the original authors. As this report of our efforts to rerun a metric-based evaluation of a set of single-attribute and multiple-attribute controllable text generation (CTG) techniques shows however, such reruns of evaluations do not always produce results that are the same as the original results, and can reveal errors in the reporting of the original work.
Massively multilingual neural machine translation (MMNMT) has been proven to enhance the translation quality of low-resource languages. In this paper, we empirically investigate the translation robustness of Indonesian-Chinese translation in the face of various naturally occurring noise. To assess this, we create a robustness evaluation benchmark dataset for Indonesian-Chinese translation. This dataset is automatically translated into Chinese using four NLLB-200 models of different sizes. We conduct both automatic and human evaluations. Our in-depth analysis reveal the correlations between translation error types and the types of noise present, how these correlations change across different model sizes, and the relationships between automatic evaluation indicators and human evaluation indicators. The dataset is publicly available at //github.com/tjunlp-lab/ID-ZH-MTRobustEval.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.