This article explores operator learning models that can deduce solutions to partial differential equations (PDEs) on arbitrary domains without requiring retraining. We introduce two innovative models rooted in boundary integral equations (BIEs): the Boundary Integral Type Deep Operator Network (BI-DeepONet) and the Boundary Integral Trigonometric Deep Operator Neural Network (BI-TDONet), which are crafted to address PDEs across diverse domains. Once fully trained, these BIE-based models adeptly predict the solutions of PDEs in any domain without the need for additional training. BI-TDONet notably enhances its performance by employing the singular value decomposition (SVD) of bounded linear operators, allowing for the efficient distribution of input functions across its modules. Furthermore, to tackle the issue of function sampling values that do not effectively capture oscillatory and impulse signal characteristics, trigonometric coefficients are utilized as both inputs and outputs in BI-TDONet. Our numerical experiments robustly support and confirm the efficacy of this theoretical framework.
Calibrating simulation models that take large quantities of multi-dimensional data as input is a hard simulation optimization problem. Existing adaptive sampling strategies offer a methodological solution. However, they may not sufficiently reduce the computational cost for estimation and solution algorithm's progress within a limited budget due to extreme noise levels and heteroskedasticity of system responses. We propose integrating stratification with adaptive sampling for the purpose of efficiency in optimization. Stratification can exploit local dependence in the simulation inputs and outputs. Yet, the state-of-the-art does not provide a full capability to adaptively stratify the data as different solution alternatives are evaluated. We devise two procedures for data-driven calibration problems that involve a large dataset with multiple covariates to calibrate models within a fixed overall simulation budget. The first approach dynamically stratifies the input data using binary trees, while the second approach uses closed-form solutions based on linearity assumptions between the objective function and concomitant variables. We find that dynamical adjustment of stratification structure accelerates optimization and reduces run-to-run variability in generated solutions. Our case study for calibrating a wind power simulation model, widely used in the wind industry, using the proposed stratified adaptive sampling, shows better-calibrated parameters under a limited budget.
The dimension of partial derivatives (Nisan and Wigderson, 1997) is a popular measure for proving lower bounds in algebraic complexity. It is used to give strong lower bounds on the Waring decomposition of polynomials (called Waring rank). This naturally leads to an interesting open question: does this measure essentially characterize the Waring rank of any polynomial? The well-studied model of Read-once Oblivious ABPs (ROABPs for short) lends itself to an interesting hierarchy of 'sub-models': Any-Order-ROABPs (ARO), Commutative ROABPs, and Diagonal ROABPs. It follows from previous works that for any polynomial, a bound on its Waring rank implies an analogous bound on its Diagonal ROABP complexity (called the duality trick), and a bound on its dimension of partial derivatives implies an analogous bound on its 'ARO complexity': ROABP complexity in any order (Nisan, 1991). Our work strengthens the latter connection by showing that a bound on the dimension of partial derivatives in fact implies a bound on the commutative ROABP complexity. Thus, we improve our understanding of partial derivatives and move a step closer towards answering the above question. Our proof builds on the work of Ramya and Tengse (2022) to show that the commutative-ROABP-width of any homogeneous polynomial is at most the dimension of its partial derivatives. The technique itself is a generalization of the proof of the duality trick due to Saxena (2008).
To assess the quality of a probabilistic prediction for stochastic dynamical systems (SDSs), scoring rules assign a numerical score based on the predictive distribution and the measured state. In this paper, we propose an $\epsilon$-logarithm score that generalizes the celebrated logarithm score by considering a neighborhood with radius $\epsilon$. We characterize the probabilistic predictability of an SDS by optimizing the expected score over the space of probability measures. We show how the probabilistic predictability is quantitatively determined by the neighborhood radius, the differential entropies of process noises, and the system dimension. Given any predictor, we provide approximations for the expected score with an error of scale $\mathcal{O}(\epsilon)$. In addition to the expected score, we also analyze the asymptotic behaviors of the score on individual trajectories. Specifically, we prove that the score on a trajectory can converge to the expected score when the process noises are independent and identically distributed. Moreover, the convergence speed against the trajectory length $T$ is of scale $\mathcal{O}(T^{-\frac{1}{2}})$ in the sense of probability. Finally, numerical examples are given to elaborate the results.
Model specification searches and modifications are commonly employed in covariance structure analysis (CSA) or structural equation modeling (SEM) to improve the goodness-of-fit. However, these practices can be susceptible to capitalizing on chance, as a model that fits one sample may not generalize to another sample from the same population. This paper introduces the improved Lagrange Multipliers (LM) test, which provides a reliable method for conducting a thorough model specification search and effectively identifying missing parameters. By leveraging the stepwise bootstrap method in the standard LM and Wald tests, our data-driven approach enhances the accuracy of parameter identification. The results from Monte Carlo simulations and two empirical applications in political science demonstrate the effectiveness of the improved LM test, particularly when dealing with small sample sizes and models with large degrees of freedom. This approach contributes to better statistical fit and addresses the issue of capitalization on chance in model specification.
We propose using mechanistic interpretability -- techniques for reverse engineering model weights into human-interpretable algorithms -- to derive and compactly prove formal guarantees on model performance. We prototype this approach by formally proving lower bounds on the accuracy of 151 small transformers trained on a Max-of-$K$ task. We create 102 different computer-assisted proof strategies and assess their length and tightness of bound on each of our models. Using quantitative metrics, we find that shorter proofs seem to require and provide more mechanistic understanding. Moreover, we find that more faithful mechanistic understanding leads to tighter performance bounds. We confirm these connections by qualitatively examining a subset of our proofs. Finally, we identify compounding structureless noise as a key challenge for using mechanistic interpretability to generate compact proofs on model performance.
Recent trends in deep learning (DL) imposed hardware accelerators as the most viable solution for several classes of high-performance computing (HPC) applications such as image classification, computer vision, and speech recognition. This survey summarizes and classifies the most recent advances in designing DL accelerators suitable to reach the performance requirements of HPC applications. In particular, it highlights the most advanced approaches to support deep learning accelerations including not only GPU and TPU-based accelerators but also design-specific hardware accelerators such as FPGA-based and ASIC-based accelerators, Neural Processing Units, open hardware RISC-V-based accelerators and co-processors. The survey also describes accelerators based on emerging memory technologies and computing paradigms, such as 3D-stacked Processor-In-Memory, non-volatile memories (mainly, Resistive RAM and Phase Change Memories) to implement in-memory computing, Neuromorphic Processing Units, and accelerators based on Multi-Chip Modules. Among emerging technologies, we also include some insights into quantum-based accelerators and photonics. To conclude, the survey classifies the most influential architectures and technologies proposed in the last years, with the purpose of offering the reader a comprehensive perspective in the rapidly evolving field of deep learning.
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.