亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of robot-assisted minimally invasive surgery, dynamic scene reconstruction can significantly enhance downstream tasks and improve surgical outcomes. Neural Radiance Fields (NeRF)-based methods have recently risen to prominence for their exceptional ability to reconstruct scenes. Nonetheless, these methods are hampered by slow inference, prolonged training, and substantial computational demands. Additionally, some rely on stereo depth estimation, which is often infeasible due to the high costs and logistical challenges associated with stereo cameras. Moreover, the monocular reconstruction quality for deformable scenes is currently inadequate. To overcome these obstacles, we present Endo-4DGS, an innovative, real-time endoscopic dynamic reconstruction approach that utilizes 4D Gaussian Splatting (GS) and requires no ground truth depth data. This method extends 3D GS by incorporating a temporal component and leverages a lightweight MLP to capture temporal Gaussian deformations. This effectively facilitates the reconstruction of dynamic surgical scenes with variable conditions. We also integrate Depth-Anything to generate pseudo-depth maps from monocular views, enhancing the depth-guided reconstruction process. Our approach has been validated on two surgical datasets, where it has proven to render in real-time, compute efficiently, and reconstruct with remarkable accuracy. These results underline the vast potential of Endo-4DGS to improve surgical assistance.

相關內容

Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initial dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and two-meter temperature two weeks in advance for the continental United States. Regression, quantile regression, and tercile classification tasks using linear models, random forests, convolutional neural networks, and stacked models (a multi-model approach based on the prediction of the individual ML models) are considered. Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to address spatial variability. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. This paper further includes an investigation of feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability.

A robot's ability to anticipate the 3D action target location of a hand's movement from egocentric videos can greatly improve safety and efficiency in human-robot interaction (HRI). While previous research predominantly focused on semantic action classification or 2D target region prediction, we argue that predicting the action target's 3D coordinate could pave the way for more versatile downstream robotics tasks, especially given the increasing prevalence of headset devices. This study expands EgoPAT3D, the sole dataset dedicated to egocentric 3D action target prediction. We augment both its size and diversity, enhancing its potential for generalization. Moreover, we substantially enhance the baseline algorithm by introducing a large pre-trained model and human prior knowledge. Remarkably, our novel algorithm can now achieve superior prediction outcomes using solely RGB images, eliminating the previous need for 3D point clouds and IMU input. Furthermore, we deploy our enhanced baseline algorithm on a real-world robotic platform to illustrate its practical utility in straightforward HRI tasks. The demonstrations showcase the real-world applicability of our advancements and may inspire more HRI use cases involving egocentric vision. All code and data are open-sourced and can be found on the project website.

Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.

Effective action abstraction is crucial in tackling challenges associated with large action spaces in Imperfect Information Extensive-Form Games (IIEFGs). However, due to the vast state space and computational complexity in IIEFGs, existing methods often rely on fixed abstractions, resulting in sub-optimal performance. In response, we introduce RL-CFR, a novel reinforcement learning (RL) approach for dynamic action abstraction. RL-CFR builds upon our innovative Markov Decision Process (MDP) formulation, with states corresponding to public information and actions represented as feature vectors indicating specific action abstractions. The reward is defined as the expected payoff difference between the selected and default action abstractions. RL-CFR constructs a game tree with RL-guided action abstractions and utilizes counterfactual regret minimization (CFR) for strategy derivation. Impressively, it can be trained from scratch, achieving higher expected payoff without increased CFR solving time. In experiments on Heads-up No-limit Texas Hold'em, RL-CFR outperforms ReBeL's replication and Slumbot, demonstrating significant win-rate margins of $64\pm 11$ and $84\pm 17$ mbb/hand, respectively.

Foundation models encode rich representations that can be adapted to downstream tasks by fine-tuning. However, fine-tuning a model on one data distribution often degrades performance under distribution shifts. Current approaches to robust fine-tuning use hand-crafted regularization techniques to constrain the fine-tuning process towards the pretrained model. Yet, it is hard to specify how to adapt relevant characteristics of the foundation model during fine-tuning, as this depends on how the pre-training, fine-tuning, and test data distributions relate to each other. We propose AutoFT, a data-driven approach for robust fine-tuning. Given a task, AutoFT searches for a fine-tuning procedure that enhances out-of-distribution (OOD) generalization. Specifically, AutoFT uses bi-level optimization to search for an objective function and hyperparameters that maximize post-adaptation performance on a small OOD validation set. We evaluate AutoFT on nine natural distribution shifts. Our experiments show that AutoFT significantly improves generalization to OOD inputs, outperforming existing robust fine-tuning methods. Notably, AutoFT achieves a new state-of-the-art on the WILDS iWildCam and FMoW benchmarks, outperforming the previous best methods by $6.0\%$ and $1.5\%$, respectively.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

In collaborative human-robot manipulation, a robot must predict human intents and adapt its actions accordingly to smoothly execute tasks. However, the human's intent in turn depends on actions the robot takes, creating a chicken-or-egg problem. Prior methods ignore such inter-dependency and instead train marginal intent prediction models independent of robot actions. This is because training conditional models is hard given a lack of paired human-robot interaction datasets. Can we instead leverage large-scale human-human interaction data that is more easily accessible? Our key insight is to exploit a correspondence between human and robot actions that enables transfer learning from human-human to human-robot data. We propose a novel architecture, InteRACT, that pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset. We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines. We also introduce new techniques to tele-operate a 7-DoF robot arm and collect a diverse range of human-robot collaborative manipulation data, which we open-source.

We consider unsupervised domain adaptation (UDA) for semantic segmentation in which the model is trained on a labeled source dataset and adapted to an unlabeled target dataset. Unfortunately, current self-training methods are susceptible to misclassified pseudo-labels resulting from erroneous predictions. Since certain classes are typically associated with less reliable predictions in UDA, reducing the impact of such pseudo-labels without skewing the training towards some classes is notoriously difficult. To this end, we propose an extensive cut-and-paste strategy (ECAP) to leverage reliable pseudo-labels through data augmentation. Specifically, ECAP maintains a memory bank of pseudo-labeled target samples throughout training and cut-and-pastes the most confident ones onto the current training batch. We implement ECAP on top of the recent method MIC and boost its performance on two synthetic-to-real domain adaptation benchmarks. Notably, MIC+ECAP reaches an unprecedented performance of 69.1 mIoU on the Synthia->Cityscapes benchmark. Our code is available at //github.com/ErikBrorsson/ECAP.

Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts. Cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains. Current solutions, however, either prioritize security with assumptions and substantial investments, or focus on reducing overhead and overlooking security considerations. In this paper, we present Kronos, a generic and efficient sharding blockchain consensus ensuring robust security. We introduce a buffer mechanism for atomic cross-shard transaction processing. Shard members collectively maintain a buffer to manage cross-shard inputs, ensuring that a transaction is committed only if all inputs are available, and no fund is transferred for invalid requests. While ensuring security, Kronos processes transactions with optimal intra-shard communication overhead. Additionally, we propose a reduction for transaction invalidity proof generation to simple and fast multicasting, leading to atomic rejection without executing full-fledged Byzantine fault tolerance protocol in optimistic scenarios. Moreover, Kronos adopts a newly designed batch mechanism, reducing inter-shard message complexity to $O((m$log$m/b)\lambda)$. Kronos operates without dependence on any time or client honesty assumption, serving as a plug-in sharding blockchain consensus supporting applications in diverse network environments including asynchronous ones. We implement Kronos using two prominent BFT protocols: Speeding Dumbo and HotStuff. Extensive experiments demonstrate Kronos achieving a substantial throughput of 68.6ktx/sec with 1.7sec latency. Compared with state-of-the-art solutions, Kronos outperforms in all cases, achieving up to a 42x improvement in throughput and a 50% reduction in latency when cross-shard transactions dominate the workload.

Cylinder pressure-based control is a key enabler for advanced pre-mixed combustion concepts. Besides guaranteeing robust and safe operation, it allows for cylinder pressure and heat release shaping. This requires fast control-oriented combustion models. Over the years, mean-value models have been proposed that can predict combustion measures (e.g., Gross Indicated Mean Effective Pressure, or the crank angle where 50% of the total heat is released) or models that predict the full in-cylinder pressure. However, these models are not able to capture cyclic variations. This is important in the control design for combustion concepts, like Reactivity Controlled Compression Ignition, that can suffer from large cyclic variations. In this study, the in-cylinder pressure and cyclic variation are modelled using a data-based approach. The model combines Principle Component Decomposition and Gaussian Process Regression. A detailed study is performed on the effects of the different hyperparameters and kernel choices. The approach is applicable to any combustion concept, but most valuable for advance combustion concepts with large cyclic variation. The potential of the proposed approach is demonstrated for an Reactivity Controlled Compression Ignition engine running on Diesel and E85. The prediction quality of the evaluated combustion measures has an overall accuracy of 13.5% and 65.5% in mean behaviour and standard deviation, respectively. The peak-pressure rise-rate is traditionally hard to predict, in the proposed model it has an accuracy of 22.7% and 96.4% in mean behaviour and standard deviation, respectively. This Principle Component Decomposition-based approach is an important step towards in-cylinder pressure shaping. The use of Gaussian Process Regression provides important information on cyclic variation and provides next-cycle controls information on safety and performance criteria.

北京阿比特科技有限公司