We study universal traits which emerge both in real-world complex datasets, as well as in artificially generated ones. Our approach is to analogize data to a physical system and employ tools from statistical physics and Random Matrix Theory (RMT) to reveal their underlying structure. We focus on the feature-feature covariance matrix, analyzing both its local and global eigenvalue statistics. Our main observations are: (i) The power-law scalings that the bulk of its eigenvalues exhibit are vastly different for uncorrelated normally distributed data compared to real-world data, (ii) this scaling behavior can be completely modeled by generating gaussian data with long range correlations, (iii) both generated and real-world datasets lie in the same universality class from the RMT perspective, as chaotic rather than integrable systems, (iv) the expected RMT statistical behavior already manifests for empirical covariance matrices at dataset sizes significantly smaller than those conventionally used for real-world training, and can be related to the number of samples required to approximate the population power-law scaling behavior, (v) the Shannon entropy is correlated with local RMT structure and eigenvalues scaling, and substantially smaller in strongly correlated datasets compared to uncorrelated synthetic data, and requires fewer samples to reach the distribution entropy. These findings show that with sufficient sample size, the Gram matrix of natural image datasets can be well approximated by a Wishart random matrix with a simple covariance structure, opening the door to rigorous studies of neural network dynamics and generalization which rely on the data Gram matrix.
With the emergence of Artificial Intelligence, numerical algorithms are moving towards more approximate approaches. For methods such as PCA or diffusion maps, it is necessary to compute eigenvalues of a large matrix, which may also be dense depending on the kernel. A global method, i.e. a method that requires all data points simultaneously, scales with the data dimension N and not with the intrinsic dimension d; the complexity for an exact dense eigendecomposition leads to $\mathcal{O}(N^{3})$. We have combined the two frameworks, $\mathsf{datafold}$ and $\mathsf{GOFMM}$. The first framework computes diffusion maps, where the computational bottleneck is the eigendecomposition while with the second framework we compute the eigendecomposition approximately within the iterative Lanczos method. A hierarchical approximation approach scales roughly with a runtime complexity of $\mathcal{O}(Nlog(N))$ vs. $\mathcal{O}(N^{3})$ for a classic approach. We evaluate the approach on two benchmark datasets -- scurve and MNIST -- with strong and weak scaling using OpenMP and MPI on dense matrices with maximum size of $100k\times100k$.
Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. Usually, answer calibration strategies such as step-level or path-level calibration play a vital role in multi-step reasoning. While effective, there remains a significant gap in our understanding of the key factors that drive their success. In this paper, we break down the design of recent answer calibration strategies and present a unified view which establishes connections between them. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.
The motivation for this paper is to detect when an irreducible projective variety V is not toric. We do this by analyzing a Lie group and a Lie algebra associated to V. If the dimension of V is strictly less than the dimension of the above mentioned objects, then V is not a toric variety. We provide an algorithm to compute the Lie algebra of an irreducible variety and use it to provide examples of non-toric statistical models in algebraic statistics.
We show that the Consensus Division theorem implies lower bounds on the chromatic number of Kneser hypergraphs, offering a novel proof for a result of Alon, Frankl, and Lov\'{a}sz (Trans. Amer. Math. Soc., 1986) and for its generalization by Kriz (Trans. Amer. Math. Soc., 1992). Our approach is applied to study the computational complexity of the total search problem Kneser$^p$, which given a succinct representation of a coloring of a $p$-uniform Kneser hypergraph with fewer colors than its chromatic number, asks to find a monochromatic hyperedge. We prove that for every prime $p$, the Kneser$^p$ problem with an extended access to the input coloring is efficiently reducible to a quite weak approximation of the Consensus Division problem with $p$ shares. In particular, for $p=2$, the problem is efficiently reducible to any non-trivial approximation of the Consensus Halving problem on normalized monotone functions. We further show that for every prime $p$, the Kneser$^p$ problem lies in the complexity class $\mathsf{PPA}$-$p$. As an application, we establish limitations on the complexity of the Kneser$^p$ problem, restricted to colorings with a bounded number of colors.
We present a proof-producing integration of ACL2 and Imandra for proving nonlinear inequalities. This leverages a new Imandra interface exposing its nonlinear decision procedures. The reasoning takes place over the reals, but the proofs produced are valid over the rationals and may be run in both ACL2 and ACL2(r). The ACL2 proofs Imandra constructs are extracted from Positivstellensatz refutations, a real algebraic analogue of the Nullstellensatz, and are found using convex optimization.
Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research.
We derive and study time-uniform confidence spheres - termed confidence sphere sequences (CSSs) - which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. More concretely, our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval), a CSS for sub-$\psi$ random vectors, and a CSS for heavy-tailed random vectors based on a sequentially valid Catoni-Giulini estimator. Finally, we provide a version of our empirical-Bernstein CSS that is robust to contamination by Huber noise.
This paper studies optimal estimation of large-dimensional nonlinear factor models. The key challenge is that the observed variables are possibly nonlinear functions of some latent variables where the functional forms are left unspecified. A local principal component analysis method is proposed to estimate the factor structure and recover information on latent variables and latent functions, which combines $K$-nearest neighbors matching and principal component analysis. Large-sample properties are established, including a sharp bound on the matching discrepancy of nearest neighbors, sup-norm error bounds for estimated local factors and factor loadings, and the uniform convergence rate of the factor structure estimator. Under mild conditions our estimator of the latent factor structure can achieve the optimal rate of uniform convergence for nonparametric regression. The method is illustrated with a Monte Carlo experiment and an empirical application studying the effect of tax cuts on economic growth.
Differentiable Filters, as recursive Bayesian estimators, possess the ability to learn complex dynamics by deriving state transition and measurement models exclusively from data. This data-driven approach eliminates the reliance on explicit analytical models while maintaining the essential algorithmic components of the filtering process. However, the gain mechanism remains non-differentiable, limiting its adaptability to specific task requirements and contextual variations. To address this limitation, this paper introduces an innovative approach called {\alpha}-MDF (Attention-based Multimodal Differentiable Filter). {\alpha}-MDF leverages modern attention mechanisms to learn multimodal latent representations for accurate state estimation in soft robots. By incorporating attention mechanisms, {\alpha}-MDF offers the flexibility to tailor the gain mechanism to the unique nature of the task and context. The effectiveness of {\alpha}-MDF is validated through real-world state estimation tasks on soft robots. Our experimental results demonstrate significant reductions in state estimation errors, consistently surpassing differentiable filter baselines by up to 45% in the domain of soft robotics.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.