亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Driven by increasing demands on connectivity to improve safety, situational awareness and operational effectiveness for first responders, more and more public safety agencies are realizing the need of modernization of their existing non-3GPP networks. 3GPP based cellular networks offer the unique opportunity of providing fast, reliable, and prioritized communications for first responders in a shared network. In this article, we give an overview of service requirements of public safety mission critical communications. We identify key technical challenges and explain how 5G NR features are being evolved to meet the emerging safety critical requirements, including enabling connectivity everywhere, supporting efficient group communications, prioritizing mission critical traffic, and providing accurate positioning for first responders.

相關內容

Advances of emerging Information and Communications Technology (ICT) technologies push the boundaries of what is possible and open up new markets for innovative ICT products and services. The adoption of ICT products and systems with security properties depends on consumers' confidence and markets' trust in the security functionalities and whether the assurance measures applied to these products meet the inherent security requirements. Such confidence and trust are primarily gained through the rigorous development of security requirements, validation criteria, evaluation, and certification. Common Criteria for Information Technology Security Evaluation (often referred to as Common Criteria or CC) is an international standard (ISO/IEC 15408) for cyber security certification. In this paper, we conduct a systematic review of the CC standards and its adoptions. Adoption barriers of the CC are also investigated based on the analysis of current trends in security evaluation. Specifically, we share the experiences and lessons gained through the recent Development of Australian Cyber Criteria Assessment (DACCA) project that promotes the CC among stakeholders in ICT security products related to specification, development, evaluation, certification and approval, procurement, and deployment. Best practices on developing Protection Profiles, recommendations, and future directions for trusted cybersecurity advancement are presented.

Exoskeletons and orthoses are wearable mobile systems providing mechanical benefits to the users. Despite significant improvements in the last decades, the technology is not fully mature to be adopted for strenuous and non-programmed tasks. To accommodate this insufficiency, different aspects of this technology need to be analysed and improved. Numerous studies have been trying to address some aspects of exoskeletons, e.g. mechanism design, intent prediction, and control scheme. However, most works have focused on a specific element of design or application without providing a comprehensive review framework. This study aims to analyse and survey the contributing aspects to the improvement and broad adoption of this technology. To address this, after introducing assistive devices and exoskeletons, the main design criteria will be investigated from a physical Human-Robot Interface (HRI) perspective. The study will be further developed by outlining several examples of known assistive devices in different categories. In order to establish an intelligent HRI strategy and enabling intuitive control for users, cognitive HRI will be investigated. Various approaches to this strategy will be reviewed, and a model for intent prediction will be proposed. This model is utilised to predict the gate phase from a single Electromyography (EMG) channel input. The outcomes of modelling show the potential use of single-channel input in low-power assistive devices. Furthermore, the proposed model can provide redundancy in devices with a complex control strategy.

Future Tele-operated Driving (ToD) applications place challenging Quality of Service (QoS) demands on existing mobile communication networks that are of highly important to comply with for safe operation. New remote control and platooning services will emerge and pose high data rate and latency requirements. One key enabler for these applications is the newly available 5G New Radio (NR) promising higher bandwidth and lower latency than its predecessors. In addition to that, public 5G networks do not consistently deliver and do not guarantee the required data rates and latency of ToD. In this paper, we discuss the communication-related requirements of tele-operated driving. ToD is regarded as a complex system consisting of multiple research areas. One key aspect of ToD is the provision and maintenance of the required data rate for teleoperation by the mobile network. An in-advance prediction method of the end-to-end data rate based on so-called Radio Environmental Maps (REMs) is discussed. Furthermore, a novel approach improving the prediction accuracy is introduced and it features individually optimized REM layers. Finally, we analyze the implementation of tele-operated driving applications on a scaled vehicular platform combined with a cyber-physical test environment consisting of real and virtual objects. This approach enables large-scale testing of remote operation and autonomous applications.

The 5G wireless networks are potentially revolutionizing future technologies. The 5G technologies are expected to foresee demands of diverse vertical applications with diverse requirements including high traffic volume, massive connectivity, high quality of service, and low latency. To fulfill such requirements in 5G and beyond, new emerging technologies such as SDN, NFV, MEC, and CC are being deployed. However, these technologies raise several issues regarding transparency, decentralization, and reliability. Furthermore, 5G networks are expected to connect many heterogeneous devices and machines which will raise several security concerns regarding users' confidentiality, data privacy, and trustworthiness. To work seamlessly and securely in such scenarios, future 5G networks need to deploy smarter and more efficient security functions. Motivated by the aforementioned issues, blockchain was proposed by researchers to overcome 5G issues because of its capacities to ensure transparency, data reliability, trustworthiness, immutability in a distributed environment. Indeed, blockchain has gained momentum as a novel technology that gives rise to a plethora of new decentralized technologies. In this chapter, we discuss the integration of the blockchain with 5G networks and beyond. We then present how blockchain applications in 5G networks and beyond could facilitate enabling various services at the edge and the core.

Security in the fifth generation (5G) networks has become one of the prime concerns in the telecommunication industry. 5G security challenges come from the fact that 5G networks involve different stakeholders using different security requirements and measures. Deficiencies in security management between these stakeholders can lead to security attacks. Therefore, security solutions should be conceived for the safe deployment of different 5G verticals (e.g., industry 4.0, Internet of Things (IoT), etc.). The interdependencies among 5G and fully connected systems, such as IoT, entail some standard security requirements, namely integrity, availability, and confidentiality. In this article, we propose a hierarchical architecture for securing 5G enabled IoT networks, and a security model for the prediction and detection of False Data Injection Attacks (FDIA) and Distributed Denial of Service attacks (DDoS). The proposed security model is based on a Markov stochastic process, which is used to observe the behavior of each network device, and employ a range-based behavior sifting policy. Simulation results demonstrate the effectiveness of the proposed architecture and model in detecting and predicting FDIA and DDoS attacks in the context of 5G enabled IoT.

Wireless energy sharing is a novel convenient alternative to charge IoT devices. In this demo paper, we present a peer-to-peer wireless energy sharing platform. The platform enables users to exchange energy wirelessly with nearby IoT devices. The energy sharing platform allows IoT users to send and receive energy wirelessly. The platform consists of (i) a mobile application that monitors and synchronizes the energy transfer among two IoT devices and (ii) and a backend to register energy providers and consumers and store their energy transfer transactions. The eveloped framework allows the collection of a real wireless energy sharing dataset. A set of preliminary experiments has been conducted on the collected dataset to analyze and demonstrate the behavior of the current wireless energy sharing technology.

This paper studies the problem of online user grouping, scheduling and power allocation in beyond 5G cellular-based Internet of things networks. Due to the massive number of devices trying to be granted to the network, non-orthogonal multiple access method is adopted in order to accommodate multiple devices in the same radio resource block. Different from most previous works, the objective is to maximize the number of served devices while allocating their transmission powers such that their real-time requirements as well as their limited operating energy are respected. First, we formulate the general problem as a mixed integer non-linear program (MINLP) that can be transformed easily to MILP for some special cases. Second, we study its computational complexity by characterizing the NP-hardness of different special cases. Then, by dividing the problem into multiple NOMA grouping and scheduling subproblems, efficient online competitive algorithms are proposed. Further, we show how to use these online algorithms and combine their solutions in a reinforcement learning setting to obtain the power allocation and hence the global solution to the problem. Our analysis are supplemented by simulation results to illustrate the performance of the proposed algorithms with comparison to optimal and state-of-the-art methods.

With the growth of 5G, Internet of Things (IoT), edge computing and cloud computing technologies, the infrastructure (compute and network) available to emerging applications (AR/VR, autonomous driving, industry 4.0, etc.) has become quite complex. There are multiple tiers of computing (IoT devices, near edge, far edge, cloud, etc.) that are connected with different types of networking technologies (LAN, LTE, 5G, MAN, WAN, etc.). Deployment and management of applications in such an environment is quite challenging. In this paper, we propose ROMA, which performs resource orchestration for microservices-based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network fabric. We assume that only application-level requirements are known, and the detailed requirements of the individual microservices in the application are not specified. As part of our solution, ROMA identifies and leverages the coupling relationship between compute and network usage for various microservices and solves an optimization problem in order to appropriately identify how each microservice should be deployed in the complex, multi-tiered compute and network fabric, so that the end-to-end application requirements are optimally met. We implemented two real-world 5G applications in video surveillance and intelligent transportation system (ITS) domains. Through extensive experiments, we show that ROMA is able to save up to 90%, 55% and 44% compute and up to 80%, 95% and 75% network bandwidth for the surveillance (watchlist) and transportation application (person and car detection), respectively. This improvement is achieved while honoring the application performance requirements, and it is over an alternative scheme that employs a static and overprovisioned resource allocation strategy by ignoring the resource coupling relationships.

Cluster analysis aims at partitioning data into groups or clusters. In applications, it is common to deal with problems where the number of clusters is unknown. Bayesian mixture models employed in such applications usually specify a flexible prior that takes into account the uncertainty with respect to the number of clusters. However, a major empirical challenge involving the use of these models is in the characterisation of the induced prior on the partitions. This work introduces an approach to compute descriptive statistics of the prior on the partitions for three selected Bayesian mixture models developed in the areas of Bayesian finite mixtures and Bayesian nonparametrics. The proposed methodology involves computationally efficient enumeration of the prior on the number of clusters in-sample (termed as ``data clusters'') and determining the first two prior moments of symmetric additive statistics characterising the partitions. The accompanying reference implementation is made available in the R package 'fipp'. Finally, we illustrate the proposed methodology through comparisons and also discuss the implications for prior elicitation in applications.

One of the core envisions of the sixth-generation (6G) wireless networks is to accumulate artificial intelligence (AI) for autonomous controlling of the Internet of Everything (IoE). Particularly, the quality of IoE services delivery must be maintained by analyzing contextual metrics of IoE such as people, data, process, and things. However, the challenges incorporate when the AI model conceives a lake of interpretation and intuition to the network service provider. Therefore, this paper provides an explainable artificial intelligence (XAI) framework for quality-aware IoE service delivery that enables both intelligence and interpretation. First, a problem of quality-aware IoE service delivery is formulated by taking into account network dynamics and contextual metrics of IoE, where the objective is to maximize the channel quality index (CQI) of each IoE service user. Second, a regression problem is devised to solve the formulated problem, where explainable coefficients of the contextual matrices are estimated by Shapley value interpretation. Third, the XAI-enabled quality-aware IoE service delivery algorithm is implemented by employing ensemble-based regression models for ensuring the interpretation of contextual relationships among the matrices to reconfigure network parameters. Finally, the experiment results show that the uplink improvement rate becomes 42.43% and 16.32% for the AdaBoost and Extra Trees, respectively, while the downlink improvement rate reaches up to 28.57% and 14.29%. However, the AdaBoost-based approach cannot maintain the CQI of IoE service users. Therefore, the proposed Extra Trees-based regression model shows significant performance gain for mitigating the trade-off between accuracy and interpretability than other baselines.

北京阿比特科技有限公司