亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose, analyze, and test new iterative solvers for large-scale systems of linear algebraic equations arising from the finite element discretization of reduced optimality systems defining the finite element approximations to the solution of elliptic tracking-type distributed optimal control problems with both the standard $L_2$ and the more general energy regularizations. If we aim at an approximation of the given desired state $y_d$ by the computed finite element state $y_h$ that asymptotically differs from $y_d$ in the order of the best $L_2$ approximation under acceptable costs for the control, then the optimal choice of the regularization parameter $\varrho$ is linked to the mesh-size $h$ by the relations $\varrho=h^4$ and $\varrho=h^2$ for the $L_2$ and the energy regularization, respectively. For this setting, we can construct efficient parallel iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in case of adaptive mesh refinement. Similar results can be obtained for the space-time finite element discretization of the corresponding parabolic and hyperbolic optimal control problems.

相關內容

We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in $L^2$-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H\"older smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.

We establish a general Bernstein--von Mises theorem for approximately linear semiparametric functionals of fractional posterior distributions based on nonparametric priors. This is illustrated in a number of nonparametric settings and for different classes of prior distributions, including Gaussian process priors. We show that fractional posterior credible sets can provide reliable semiparametric uncertainty quantification, but have inflated size. To remedy this, we further propose a \textit{shifted-and-rescaled} fractional posterior set that is an efficient confidence set having optimal size under regularity conditions. As part of our proofs, we also refine existing contraction rate results for fractional posteriors by sharpening the dependence of the rate on the fractional exponent.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

Partitioned methods for coupled problems rely on data transfers between subdomains to synchronize the subdomain equations and enable their independent solution. By treating each subproblem as a separate entity, these methods enable code reuse, increase concurrency and provide a convenient framework for plug-and-play multiphysics simulations. However, accuracy and stability of partitioned methods depends critically on the type of information exchanged between the subproblems. The exchange mechanisms can vary from minimally intrusive remap across interfaces to more accurate but also more intrusive and expensive estimates of the necessary information based on monolithic formulations of the coupled system. These transfer mechanisms are separated by accuracy, performance and intrusiveness gaps that tend to limit the scope of the resulting partitioned methods to specific simulation scenarios. Data-driven system identification techniques provide an opportunity to close these gaps by enabling the construction of accurate, computationally efficient and minimally intrusive data transfer surrogates. This approach shifts the principal computational burden to an offline phase, leaving the application of the surrogate as the sole additional cost during the online simulation phase. In this paper we formulate and demonstrate such a \emph{dynamic flux surrogate-based} partitioned method for a model advection-diffusion transmission problem by using Dynamic Mode Decomposition (DMD) to learn the dynamics of the interface flux from data. The accuracy of the resulting DMD flux surrogate is comparable to that of a dual Schur complement reconstruction, yet its application cost is significantly lower. Numerical results confirm the attractive properties of the new partitioned approach.

We consider the problem of optimising the expected value of a loss functional over a nonlinear model class of functions, assuming that we have only access to realisations of the gradient of the loss. This is a classical task in statistics, machine learning and physics-informed machine learning. A straightforward solution is to replace the exact objective with a Monte Carlo estimate before employing standard first-order methods like gradient descent, which yields the classical stochastic gradient descent method. But replacing the true objective with an estimate ensues a ``generalisation error''. Rigorous bounds for this error typically require strong compactness and Lipschitz continuity assumptions while providing a very slow decay with sample size. We propose a different optimisation strategy relying on a natural gradient descent in which the true gradient is approximated in local linearisations of the model class via (quasi-)projections based on optimal sampling methods. Under classical assumptions on the loss and the nonlinear model class, we prove that this scheme converges almost surely monotonically to a stationary point of the true objective and we provide convergence rates.

We propose a new class of finite element approximations to ideal compressible magnetohydrody- namic equations in smooth regime. Following variational approximations developed for fluid models in the last decade, our discretizations are built via a discrete variational principle mimicking the continuous Euler-Poincare principle, and to further exploit the geometrical structure of the prob- lem, vector fields are represented by their action as Lie derivatives on differential forms of any degree. The resulting semi-discrete approximations are shown to conserve the total mass, entropy and energy of the solutions for a wide class of finite element approximations. In addition, the divergence-free nature of the magnetic field is preserved in a pointwise sense and a time discretiza- tion is proposed, preserving those invariants and giving a reversible scheme at the fully discrete level. Numerical simulations are conducted to verify the accuracy of our approach and its ability to preserve the invariants for several test problems.

Building prediction models from mass-spectrometry data is challenging due to the abundance of correlated features with varying degrees of zero-inflation, leading to a common interest in reducing the features to a concise predictor set with good predictive performance. In this study, we formally established and examined regularized regression approaches, designed to address zero-inflated and correlated predictors. In particular, we describe a novel two-stage regularized regression approach (ridge-garrote) explicitly modelling zero-inflated predictors using two component variables, comprising a ridge estimator in the first stage and subsequently applying a nonnegative garrote estimator in the second stage. We contrasted ridge-garrote with one-stage methods (ridge, lasso) and other two-stage regularized regression approaches (lasso-ridge, ridge-lasso) for zero-inflated predictors. We assessed the predictive performance and predictor selection properties of these methods in a comparative simulation study and a real-data case study to predict kidney function using peptidomic features derived from mass-spectrometry. In the simulation study, the predictive performance of all assessed approaches was comparable, yet the ridge-garrote approach consistently selected more parsimonious models compared to its competitors in most scenarios. While lasso-ridge achieved higher predictive accuracy than its competitors, it exhibited high variability in the number of selected predictors. Ridge-lasso exhibited slightly superior predictive accuracy than ridge-garrote but at the expense of selecting more noise predictors. Overall, ridge emerged as a favourable option when variable selection is not a primary concern, while ridge-garrote demonstrated notable practical utility in selecting a parsimonious set of predictors, with only minimal compromise in predictive accuracy.

An efficient approximate version of implicit Taylor methods for initial-value problems of systems of ordinary differential equations (ODEs) is introduced. The approach, based on an approximate formulation of Taylor methods, produces a method that requires less evaluations of the function that defines the ODE and its derivatives than the usual version. On the other hand, an efficient numerical solution of the equation that arises from the discretization by means of Newton's method is introduced for an implicit scheme of any order. Numerical experiments illustrate that the resulting algorithm is simpler to implement and has better performance than its exact counterpart.

We propose a model for the coupling of flow and transport equations with porous membrane-type conditions on part of the boundary. The governing equations consist of the incompressible Navier--Stokes equations coupled with an advection-diffusion equation, and we employ a Lagrange multiplier to enforce the coupling between penetration velocity and transport on the membrane, while mixed boundary conditions are considered in the remainder of the boundary. We show existence and uniqueness of the continuous problem using a fixed-point argument. Next, an H(div)-conforming finite element formulation is proposed, and we address its a priori error analysis. The method uses an upwind approach that provides stability in the convection-dominated regime. We showcase a set of numerical examples validating the theory and illustrating the use of the new methods in the simulation of reverse osmosis processes.

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

北京阿比特科技有限公司