亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only a small fraction of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners.

相關內容

機器翻譯(yi),又稱為自(zi)動翻譯(yi),是(shi)利用計算機將一(yi)種(zhong)自(zi)然語言(yan)(源語言(yan))轉(zhuan)換為另(ling)一(yi)種(zhong)自(zi)然語言(yan)(目(mu)標語言(yan))的(de)過程(cheng)。它是(shi)計算語言(yan)學(xue)的(de)一(yi)個分(fen)支(zhi),是(shi)人工智能的(de)終極目(mu)標之一(yi),具有重要的(de)科學(xue)研究價值。

知識薈萃

精品(pin)入門(men)和(he)進階(jie)教程(cheng)、論文和(he)代碼整(zheng)理等

更多

查(cha)看相關(guan)VIP內容、論文(wen)、資訊(xun)等(deng)

Arguments evoke emotions, influencing the effect of the argument itself. Not only the emotional intensity but also the category influence the argument's effects, for instance, the willingness to adapt stances. While binary emotionality has been studied in arguments, there is no work on discrete emotion categories (e.g., "Anger") in such data. To fill this gap, we crowdsource subjective annotations of emotion categories in a German argument corpus and evaluate automatic LLM-based labeling methods. Specifically, we compare three prompting strategies (zero-shot, one-shot, chain-of-thought) on three large instruction-tuned language models (Falcon-7b-instruct, Llama-3.1-8B-instruct, GPT-4o-mini). We further vary the definition of the output space to be binary (is there emotionality in the argument?), closed-domain (which emotion from a given label set is in the argument?), or open-domain (which emotion is in the argument?). We find that emotion categories enhance the prediction of emotionality in arguments, emphasizing the need for discrete emotion annotations in arguments. Across all prompt settings and models, automatic predictions show a high recall but low precision for predicting anger and fear, indicating a strong bias toward negative emotions.

Stablecoins are digital assets designed to maintain a stable value, typically pegged to traditional currencies. Despite their growing prominence, many stablecoins have struggled to consistently meet stability expectations, and their underlying mechanisms often remain opaque and challenging to analyze. This paper focuses on the DAI stablecoin, which combines crypto-collateralization and algorithmic mechanisms. We propose a formal logic-based framework for representing the policies and operations of DAI, implemented in Prolog and released as open-source software. Our framework enables detailed analysis and simulation of DAI's stability mechanisms, providing a foundation for understanding its robustness and identifying potential vulnerabilities.

This paper explores image modeling from the frequency space and introduces DCTdiff, an end-to-end diffusion generative paradigm that efficiently models images in the discrete cosine transform (DCT) space. We investigate the design space of DCTdiff and reveal the key design factors. Experiments on different frameworks (UViT, DiT), generation tasks, and various diffusion samplers demonstrate that DCTdiff outperforms pixel-based diffusion models regarding generative quality and training efficiency. Remarkably, DCTdiff can seamlessly scale up to high-resolution generation without using the latent diffusion paradigm. Finally, we illustrate several intriguing properties of DCT image modeling. For example, we provide a theoretical proof of why `image diffusion can be seen as spectral autoregression', bridging the gap between diffusion and autoregressive models. The effectiveness of DCTdiff and the introduced properties suggest a promising direction for image modeling in the frequency space. The code is at \url{//github.com/forever208/DCTdiff}.

Properly understanding the performances of classifiers is essential in various scenarios. However, the literature often relies only on one or two standard scores to compare classifiers, which fails to capture the nuances of application-specific requirements, potentially leading to suboptimal classifier selection. Recently, a paper on the foundations of the theory of performance-based ranking introduced a tool, called the Tile, that organizes an infinity of ranking scores into a 2D map. Thanks to the Tile, it is now possible to evaluate and compare classifiers efficiently, displaying all possible application-specific preferences instead of having to rely on a pair of scores. In this paper, we provide a first hitchhiker's guide for understanding the performances of two-class classifiers by presenting four scenarios, each showcasing a different user profile: a theoretical analyst, a method designer, a benchmarker, and an application developer. Particularly, we show that we can provide different interpretative flavors that are adapted to the user's needs by mapping different values on the Tile. As an illustration, we leverage the newly introduced Tile tool and the different flavors to rank and analyze the performances of 74 state-of-the-art semantic segmentation models in two-class classification through the eyes of the four user profiles. Through these user profiles, we demonstrate that the Tile effectively captures the behavior of classifiers in a single visualization, while accommodating an infinite number of ranking scores.

Convolutional Neural Networks (CNNs) are crucial in various applications, but their deployment on resource-constrained edge devices poses challenges. This study presents the Sum-of-Products (SOP) units for convolution, which utilize low-latency left-to-right bit-serial arithmetic to minimize response time and enhance overall performance. The study proposes a methodology for fusing multiple convolution layers to reduce off-chip memory communication and increase overall performance. An effective mechanism detects and skips inefficient convolutions after ReLU layers, minimizing power consumption without compromising accuracy. Furthermore, efficient tile movement guarantees uniform access to the fusion pyramid. An analysis demonstrates the utile stride strategy improves operational intensity. Two designs cater to varied demands: one focuses on minimal response time for mission-critical applications, and another focuses on resource-constrained devices with comparable latency. This approach notably reduced redundant computations, improving the efficiency of CNN deployment on edge devices.

Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor's digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor's unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client's questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.

AI infrastructures, predominantly GPUs, have delivered remarkable performance gains for deep learning. Conversely, scientific computing, exemplified by quantum chemistry systems, suffers from dynamic diversity, where computational patterns are more diverse and vary dynamically, posing a significant challenge to sponge acceleration off GPUs. In this paper, we propose Matryoshka, a novel elastically-parallel technique for the efficient execution of quantum chemistry system with dynamic diversity on GPU. Matryoshka capitalizes on Elastic Parallelism Transformation, a property prevalent in scientific systems yet underexplored for dynamic diversity, to elastically realign parallel patterns with GPU architecture. Structured around three transformation primitives (Permutation, Deconstruction, and Combination), Matryoshka encompasses three core components. The Block Constructor serves as the central orchestrator, which reformulates data structures accommodating dynamic inputs and constructs fine-grained GPU-efficient compute blocks. Within each compute block, the Graph Compiler operates offline, generating high-performance code with clear computational path through an automated compilation process. The Workload Allocator dynamically schedules workloads with varying operational intensities to threads online. It achieves highly efficient parallelism for compute-intensive operations and facilitates fusion with neighboring memory-intensive operations automatically. Extensive evaluation shows that Matryoshka effectively addresses dynamic diversity, yielding acceleration improvements of up to 13.86x (average 9.41x) over prevailing state-of-the-art approaches on 13 quantum chemistry systems.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司