亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The security of code based constructions is usually assessed by Information Set Decoding (ISD) algorithms. In the quantum setting, amplitude amplification yields an asymptotic square root gain over the classical analogue. However, it is still unclear whether a real quantum circuit could yield actual improvements or suffer an enormous overhead due to its implementation. This leads to different considerations of these quantum attacks in the security analysis of code based proposals. In this work we clarify this doubt by giving the first quantum circuit design of the fully-fledged ISD procedure, an implementation in the quantum simulation library Qibo as well as precise estimates of its complexities. We show that against common belief, Prange's ISD algorithm can be implemented rather efficiently on a quantum computer, namely with only a logarithmic overhead in circuit depth compared to a classical implementation. As another major contribution, we leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs, that allow to tailor the necessary qubits to any available amount, while still providing quantum speedups. Interestingly, when constraining the width of the circuit instead of its depth we are able to overcome previous optimality results on constraint quantum search.

相關內容

In the training of over-parameterized model functions via gradient descent, sometimes the parameters do not change significantly and remain close to their initial values. This phenomenon is called lazy training, and motivates consideration of the linear approximation of the model function around the initial parameters. In the lazy regime, this linear approximation imitates the behavior of the parameterized function whose associated kernel, called the tangent kernel, specifies the training performance of the model. Lazy training is known to occur in the case of (classical) neural networks with large widths. In this paper, we show that the training of geometrically local parameterized quantum circuits enters the lazy regime for large numbers of qubits. More precisely, we prove bounds on the rate of changes of the parameters of such a geometrically local parameterized quantum circuit in the training process, and on the precision of the linear approximation of the associated quantum model function; both of these bounds tend to zero as the number of qubits grows. We support our analytic results with numerical simulations.

In this paper, we study quantum algorithms for computing the exact value of the treewidth of a graph. Our algorithms are based on the classical algorithm by Fomin and Villanger (Combinatorica 32, 2012) that uses $O(2.616^n)$ time and polynomial space. We show three quantum algorithms with the following complexity, using QRAM in both exponential space algorithms: $\bullet$ $O(1.618^n)$ time and polynomial space; $\bullet$ $O(1.554^n)$ time and $O(1.452^n)$ space; $\bullet$ $O(1.538^n)$ time and space. In contrast, the fastest known classical algorithm for treewidth uses $O(1.755^n)$ time and space. The first two speed-ups are obtained in a fairly straightforward way. The first version uses additionally only Grover's search and provides a quadratic speedup. The second speedup is more time-efficient and uses both Grover's search and the quantum exponential dynamic programming by Ambainis et al. (SODA '19). The third version uses the specific properties of the classical algorithm and treewidth, with a modified version of the quantum dynamic programming on the hypercube. Lastly, as a small side result, we also give a new classical time-space tradeoff for computing treewidth in $O^*(2^n)$ time and $O^*(\sqrt{2^n})$ space.

We initiate the study of parameterized complexity of $\textsf{QMA}$ problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + $t$ $T$-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most $t$ qubits (independent of the system size). Furthermore, we derive new lower bounds on the $T$-count of circuit satisfiability instances and the $T$-count of the $W$-state assuming the classical exponential time hypothesis ($\textsf{ETH}$). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.

Quantum teleportation allows one to transmit an arbitrary qubit from point A to point B using a pair of (pre-shared) entangled qubits and classical bits of information. The conventional protocol for teleportation uses two bits of classical information and assumes that the sender has access to only one copy of the arbitrary qubit to the sent. Here, we ask whether we can do better than two bits of classical information if the sender has access to multiple copies of the qubit to be teleported. We place no restrictions on the qubit states. Consequently, we propose a modified quantum teleportation protocol that allows Alice to reset the state of the entangled pair to its initial state using only local operations. As a result, the proposed teleportation protocol requires the transmission of only one classical bit with a probability greater than one-half. This has implications for efficient quantum communications and security of quantum cryptographic protocols based on quantum entanglement.

We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with the $p$-faces of the $n$-cube (for $n>p$) and stabilizer constraints with faces of dimension $(p\pm1)$. The quantum code obtained by identifying antipodal faces of the resulting complex encodes one logical qubit into $N = 2^{n-p-1} \tbinom{n}{p}$ physical qubits and displays local testability with a soundness of $\Omega(1/\log(N))$ beating the current state-of-the-art of $1/\log^{2}(N)$ due to Hastings. We exploit this local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less than the minimum distance, up to polylog factors. We then extend this code family by considering the quotient of the $n$-cube by arbitrary linear classical codes of length $n$. We establish the parameters of these generalized hemicubic codes. Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the ordinary $n$-cube, then the generalized hemicubic codes could yield quantum locally testable codes of length not exceeding an exponential or even polynomial function of the code dimension.

In this paper, we introduce classically time-controlled quantum automata or CTQA, which is a reasonable modification of Moore-Crutchfield quantum finite automata that uses time-dependent evolution and a "scheduler" defining how long each Hamiltonian will run. Surprisingly enough, time-dependent evolution provides a significant change in the computational power of quantum automata with respect to a discrete quantum model. Indeed, we show that if a scheduler is not computationally restricted, then a CTQA can decide the Halting problem. In order to unearth the computational capabilities of CTQAs we study the case of a computationally restricted scheduler. In particular, we showed that depending on the type of restriction imposed on the scheduler, a CTQA can (i) recognize non-regular languages with cut-point, even in the presence of Karp-Lipton advice, and (ii) recognize non-regular promise languages with bounded-error. Furthermore, we study the cutpoint-union of cutpoint languages by introducing a new model of Moore-Crutchfield quantum finite automata with a rotating tape head. CTQA presents itself as a new model of computation that provides a different approach to a formal study of "classical control, quantum data" schemes in quantum computing.

In 2017, Krenn reported that certain problems related to the perfect matchings and colourings of graphs emerge out of studying the constructability of general quantum states using modern photonic technologies. He realized that if we can prove that the \emph{weighted matching index} of a graph, a parameter defined in terms of perfect matchings and colourings of the graph is at most 2, that could lead to exciting insights on the potential of resources of quantum inference. Motivated by this, he conjectured that the {weighted matching index} of any graph is at most 2. The first result on this conjecture was by Bogdanov, who proved that the \emph{(unweighted) matching index} of graphs (non-isomorphic to $K_4$) is at most 2, thus classifying graphs non-isomorphic to $K_4$ into Type 0, Type 1 and Type 2. By definition, the weighted matching index of Type 0 graphs is 0. We give a structural characterization for Type 2 graphs, using which we settle Krenn's conjecture for Type 2 graphs. Using this characterization, we provide a simple $O(|V||E|)$ time algorithm to find the unweighted matching index of any graph. In view of our work, Krenn's conjecture remains to be proved only for Type 1 graphs. We give upper bounds for the weighted matching index in terms of connectivity parameters for such graphs. Using these bounds, for a slightly simplified version, we settle Krenn's conjecture for the class of graphs with vertex connectivity at most 2 and the class of graphs with maximum degree at most 4. Krenn has been publicizing his conjecture in various ways since 2017. He has even declared a reward for a resolution of his conjecture. We hope that this article will popularize the problem among computer scientists.

Verifying quantum systems has attracted a lot of interest in the last decades. In this paper, we study the quantitative model-checking of quantum continuous-time Markov chains (quantum CTMCs). The branching-time properties of quantum CTMCs are specified by continuous stochastic logic (CSL), which is famous for verifying real-time systems, including classical CTMCs. The core of checking the CSL formulas lies in tackling multiphase until formulas. We develop an algebraic method using proper projection, matrix exponentiation, and definite integration to symbolically calculate the probability measures of path formulas. Thus the decidability of CSL is established. To be efficient, numerical methods are incorporated to guarantee that the time complexity is polynomial in the encoding size of the input model and linear in the size of the input formula. A running example of Apollonian networks is further provided to demonstrate our method.

We consider the one-bit quantizer that minimizes the mean squared error for a source living in a real Hilbert space. The optimal quantizer is a projection followed by a thresholding operation, and we provide methods for identifying the optimal direction along which to project. As an application of our methods, we characterize the optimal one-bit quantizer for a continuous-time random process that exhibits low-dimensional structure. We numerically show that this optimal quantizer is found by a neural-network-based compressor trained via stochastic gradient descent.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

北京阿比特科技有限公司