There are many ways machine learning and big data analytics are used in the fight against the COVID-19 pandemic, including predictions, risk management, diagnostics, and prevention. This study focuses on predicting COVID-19 patient shielding -- identifying and protecting patients who are clinically extremely vulnerable from coronavirus. This study focuses on techniques used for the multi-label classification of medical text. Using the information published by the United Kingdom NHS and the World Health Organisation, we present a novel approach to predicting COVID-19 patient shielding as a multi-label classification problem. We use publicly available, de-identified ICU medical text data for our experiments. The labels are derived from the published COVID-19 patient shielding data. We present an extensive comparison across 12 multi-label classifiers from the simple binary relevance to neural networks and the most recent transformers. To the best of our knowledge this is the first comprehensive study, where such a range of multi-label classifiers for medical text are considered. We highlight the benefits of various approaches, and argue that, for the task at hand, both predictive accuracy and processing time are essential.
COVID-19 vaccines have been rolled out in many countries and with them a number of vaccination certificates. For instance, the EU is utilizing a digital certificate in the form of a QR-code that is digitally signed and can be easily validated throughout all EU countries.In this paper, we investigate the current state of the COVID-19 vaccination certificate market in the darkweb with a focus on the EU Digital Green Certificate (DGC). We investigate $17$ marketplaces and $10$ vendor shops, that include vaccination certificates in their listings. Our results suggest that a multitude of sellers in both types of platforms are advertising selling capabilities. According to their claims, it is possible to buy fake vaccination certificates issued in most countries worldwide. We demonstrate some examples of such sellers, including how they advertise their capabilities, and the methods they claim to be using to provide their services. We highlight two particular cases of vendor shops, with one of them showing an elevated degree of professionalism, showcasing forged valid certificates, the validity of which we verify using two different national mobile COVID-19 applications.
COVID-19 pandemic is an ongoing global pandemic which has caused unprecedented disruptions in the public health sector and global economy. The virus, SARS-CoV-2 is responsible for the rapid transmission of coronavirus disease. Due to its contagious nature, the virus can easily infect an unprotected and exposed individual from mild to severe symptoms. The study of the virus effects on pregnant mothers and neonatal is now a concerning issue globally among civilians and public health workers considering how the virus will affect the mother and the neonates health. This paper aims to develop a predictive model to estimate the possibility of death for a COVID-diagnosed mother based on documented symptoms: dyspnea, cough, rhinorrhea, arthralgia, and the diagnosis of pneumonia. The machine learning models that have been used in our study are support vector machine, decision tree, random forest, gradient boosting, and artificial neural network. The models have provided impressive results and can accurately predict the mortality of pregnant mothers with a given input.The precision rate for 3 models(ANN, Gradient Boost, Random Forest) is 100% The highest accuracy score(Gradient Boosting,ANN) is 95%,highest recall(Support Vector Machine) is 92.75% and highest f1 score(Gradient Boosting,ANN) is 94.66%. Due to the accuracy of the model, pregnant mother can expect immediate medical treatment based on their possibility of death due to the virus. The model can be utilized by health workers globally to list down emergency patients, which can ultimately reduce the death rate of COVID-19 diagnosed pregnant mothers.
Deep Reinforcement Learning (DRL) and Deep Multi-agent Reinforcement Learning (MARL) have achieved significant success across a wide range of domains, such as game AI, autonomous vehicles, robotics and finance. However, DRL and deep MARL agents are widely known to be sample-inefficient and millions of interactions are usually needed even for relatively simple game settings, thus preventing the wide application in real-industry scenarios. One bottleneck challenge behind is the well-known exploration problem, i.e., how to efficiently explore the unknown environments and collect informative experiences that could benefit the policy learning most. In this paper, we conduct a comprehensive survey on existing exploration methods in DRL and deep MARL for the purpose of providing understandings and insights on the critical problems and solutions. We first identify several key challenges to achieve efficient exploration, which most of the exploration methods aim at addressing. Then we provide a systematic survey of existing approaches by classifying them into two major categories: uncertainty-oriented exploration and intrinsic motivation-oriented exploration. The essence of uncertainty-oriented exploration is to leverage the quantification of the epistemic and aleatoric uncertainty to derive efficient exploration. By contrast, intrinsic motivation-oriented exploration methods usually incorporate different reward agnostic information for intrinsic exploration guidance. Beyond the above two main branches, we also conclude other exploration methods which adopt sophisticated techniques but are difficult to be classified into the above two categories. In addition, we provide a comprehensive empirical comparison of exploration methods for DRL on a set of commonly used benchmarks. Finally, we summarize the open problems of exploration in DRL and deep MARL and point out a few future directions.
Prediction over tabular data is an essential task in many data science applications such as recommender systems, online advertising, medical treatment, etc. Tabular data is structured into rows and columns, with each row as a data sample and each column as a feature attribute. Both the columns and rows of the tabular data carry useful patterns that could improve the model prediction performance. However, most existing models focus on the cross-column patterns yet overlook the cross-row patterns as they deal with single samples independently. In this work, we propose a general learning framework named Retrieval & Interaction Machine (RIM) that fully exploits both cross-row and cross-column patterns among tabular data. Specifically, RIM first leverages search engine techniques to efficiently retrieve useful rows of the table to assist the label prediction of the target row, then uses feature interaction networks to capture the cross-column patterns among the target row and the retrieved rows so as to make the final label prediction. We conduct extensive experiments on 11 datasets of three important tasks, i.e., CTR prediction (classification), top-n recommendation (ranking) and rating prediction (regression). Experimental results show that RIM achieves significant improvements over the state-of-the-art and various baselines, demonstrating the superiority and efficacy of RIM.
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.
The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
To provide a survey on the existing tasks and models in Machine Reading Comprehension (MRC), this report reviews: 1) the dataset collection and performance evaluation of some representative simple-reasoning and complex-reasoning MRC tasks; 2) the architecture designs, attention mechanisms, and performance-boosting approaches for developing neural-network-based MRC models; 3) some recently proposed transfer learning approaches to incorporating text-style knowledge contained in external corpora into the neural networks of MRC models; 4) some recently proposed knowledge base encoding approaches to incorporating graph-style knowledge contained in external knowledge bases into the neural networks of MRC models. Besides, according to what has been achieved and what are still deficient, this report also proposes some open problems for the future research.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.