Imitation learning, in which learning is performed by demonstration, has been studied and advanced for sequential decision-making tasks in which a reward function is not predefined. However, imitation learning methods still require numerous expert demonstration samples to successfully imitate an expert's behavior. To improve sample efficiency, we utilize self-supervised representation learning, which can generate vast training signals from the given data. In this study, we propose a self-supervised representation-based adversarial imitation learning method to learn state and action representations that are robust to diverse distortions and temporally predictive, on non-image control tasks. In particular, in comparison with existing self-supervised learning methods for tabular data, we propose a different corruption method for state and action representations that is robust to diverse distortions. We theoretically and empirically observe that making an informative feature manifold with less sample complexity significantly improves the performance of imitation learning. The proposed method shows a 39% relative improvement over existing adversarial imitation learning methods on MuJoCo in a setting limited to 100 expert state-action pairs. Moreover, we conduct comprehensive ablations and additional experiments using demonstrations with varying optimality to provide insights into a range of factors.
Federated learning is a powerful paradigm for large-scale machine learning, but it faces significant challenges due to unreliable network connections, slow communication, and substantial data heterogeneity across clients. FedAvg and SCAFFOLD are two prominent algorithms to address these challenges. In particular, FedAvg employs multiple local updates before communicating with a central server, while SCAFFOLD maintains a control variable on each client to compensate for ``client drift'' in its local updates. Various methods have been proposed to enhance the convergence of these two algorithms, but they either make impractical adjustments to the algorithmic structure or rely on the assumption of bounded data heterogeneity. This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAFFOLD. When all clients participate in the training process, we demonstrate that incorporating momentum allows FedAvg to converge without relying on the assumption of bounded data heterogeneity even using a constant local learning rate. This is novel and fairly surprising as existing analyses for FedAvg require bounded data heterogeneity even with diminishing local learning rates. In partial client participation, we show that momentum enables SCAFFOLD to converge provably faster without imposing any additional assumptions. Furthermore, we use momentum to develop new variance-reduced extensions of FedAvg and SCAFFOLD, which exhibit state-of-the-art convergence rates. Our experimental results support all theoretical findings.
The premise of identifiable and causal representation learning is to improve the current representation learning paradigm in terms of generalizability or robustness. Despite recent progress in questions of identifiability, more theoretical results demonstrating concrete advantages of these methods for downstream tasks are needed. In this paper, we consider the task of intervention extrapolation: predicting how interventions affect an outcome, even when those interventions are not observed at training time, and show that identifiable representations can provide an effective solution to this task even if the interventions affect the outcome non-linearly. Our setup includes an outcome Y, observed features X, which are generated as a non-linear transformation of latent features Z, and exogenous action variables A, which influence Z. The objective of intervention extrapolation is to predict how interventions on A that lie outside the training support of A affect Y. Here, extrapolation becomes possible if the effect of A on Z is linear and the residual when regressing Z on A has full support. As Z is latent, we combine the task of intervention extrapolation with identifiable representation learning, which we call Rep4Ex: we aim to map the observed features X into a subspace that allows for non-linear extrapolation in A. We show that the hidden representation is identifiable up to an affine transformation in Z-space, which is sufficient for intervention extrapolation. The identifiability is characterized by a novel constraint describing the linearity assumption of A on Z. Based on this insight, we propose a method that enforces the linear invariance constraint and can be combined with any type of autoencoder. We validate our theoretical findings through synthetic experiments and show that our approach succeeds in predicting the effects of unseen interventions.
The generation of molecules with desired properties has become increasingly popular, revolutionizing the way scientists design molecular structures and providing valuable support for chemical and drug design. However, despite the potential of language models in molecule generation, they face challenges such as generating syntactically or chemically flawed molecules, having narrow domain focus, and struggling to create diverse and feasible molecules due to limited annotated data or external molecular databases. To tackle these challenges, we introduce MolGen, a pre-trained molecular language model tailored specifically for molecule generation. Through the reconstruction of over 100 million molecular SELFIES, MolGen internalizes structural and grammatical insights. This is further enhanced by domain-agnostic molecular prefix tuning, fostering robust knowledge transfer across diverse domains. Importantly, our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences. Extensive experiments on well-known benchmarks underscore MolGen's optimization capabilities in properties such as penalized logP, QED, and molecular docking. Additional analyses confirm its proficiency in accurately capturing molecule distributions, discerning intricate structural patterns, and efficiently exploring the chemical space. Code is available at //github.com/zjunlp/MolGen.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or meta-data, to learn new tasks much faster than otherwise possible. Not only does this dramatically speed up and improve the design of machine learning pipelines or neural architectures, it also allows us to replace hand-engineered algorithms with novel approaches learned in a data-driven way. In this chapter, we provide an overview of the state of the art in this fascinating and continuously evolving field.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.