亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Linear Parameter Varying Dynamical System (LPV-DS) is a promising framework for learning stable time-invariant motion policies in robot control. By employing statistical modeling and semi-definite optimization, LPV-DS encodes complex motions via non-linear DS, ensuring the robustness and stability of the system. However, the current LPV-DS scheme faces challenges in accurately interpreting trajectory data while maintaining model efficiency and computational efficiency. To address these limitations, we propose the Directionality-aware Mixture Model (DAMM), a new statistical model that leverages Riemannian metric on $d$-dimensional sphere $\mathbb{S}^d$, and efficiently incorporates non-Euclidean directional information with position. Additionally, we introduce a hybrid Markov chain Monte Carlo method that combines the Gibbs Sampling and the Split/Merge Proposal, facilitating parallel computation and enabling faster inference for near real-time learning performance. Through extensive empirical validation, we demonstrate that the improved LPV-DS framework with DAMM is capable of producing physically-meaningful representations of the trajectory data and improved performance of the generated DS while showcasing significantly enhanced learning speed compared to its previous iterations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performance · Learning · MoDELS · Networks ·
2023 年 10 月 23 日

Federated Learning (FL) is a promising research paradigm that enables the collaborative training of machine learning models among various parties without the need for sensitive information exchange. Nonetheless, retaining data in individual clients introduces fundamental challenges to achieving performance on par with centrally trained models. Our study provides an extensive review of federated learning applied to visual recognition. It underscores the critical role of thoughtful architectural design choices in achieving optimal performance, a factor often neglected in the FL literature. Many existing FL solutions are tested on shallow or simple networks, which may not accurately reflect real-world applications. This practice restricts the transferability of research findings to large-scale visual recognition models. Through an in-depth analysis of diverse cutting-edge architectures such as convolutional neural networks, transformers, and MLP-mixers, we experimentally demonstrate that architectural choices can substantially enhance FL systems' performance, particularly when handling heterogeneous data. We study 19 visual recognition models from five different architectural families on four challenging FL datasets. We also re-investigate the inferior performance of convolution-based architectures in the FL setting and analyze the influence of normalization layers on the FL performance. Our findings emphasize the importance of architectural design for computer vision tasks in practical scenarios, effectively narrowing the performance gap between federated and centralized learning. Our source code is available at //github.com/sarapieri/fed_het.git.

Large Language Models (LLMs) are progressively being utilized as machine learning services and interface tools for various applications. However, the security implications of LLMs, particularly in relation to adversarial and Trojan attacks, remain insufficiently examined. In this paper, we propose TrojLLM, an automatic and black-box framework to effectively generate universal and stealthy triggers. When these triggers are incorporated into the input data, the LLMs' outputs can be maliciously manipulated. Moreover, the framework also supports embedding Trojans within discrete prompts, enhancing the overall effectiveness and precision of the triggers' attacks. Specifically, we propose a trigger discovery algorithm for generating universal triggers for various inputs by querying victim LLM-based APIs using few-shot data samples. Furthermore, we introduce a novel progressive Trojan poisoning algorithm designed to generate poisoned prompts that retain efficacy and transferability across a diverse range of models. Our experiments and results demonstrate TrojLLM's capacity to effectively insert Trojans into text prompts in real-world black-box LLM APIs including GPT-3.5 and GPT-4, while maintaining exceptional performance on clean test sets. Our work sheds light on the potential security risks in current models and offers a potential defensive approach. The source code of TrojLLM is available at //github.com/UCF-ML-Research/TrojLLM.

Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.

Graph Neural Networks (GNNs) have become a popular tool for learning on graphs, but their widespread use raises privacy concerns as graph data can contain personal or sensitive information. Differentially private GNN models have been recently proposed to preserve privacy while still allowing for effective learning over graph-structured datasets. However, achieving an ideal balance between accuracy and privacy in GNNs remains challenging due to the intrinsic structural connectivity of graphs. In this paper, we propose a new differentially private GNN called ProGAP that uses a progressive training scheme to improve such accuracy-privacy trade-offs. Combined with the aggregation perturbation technique to ensure differential privacy, ProGAP splits a GNN into a sequence of overlapping submodels that are trained progressively, expanding from the first submodel to the complete model. Specifically, each submodel is trained over the privately aggregated node embeddings learned and cached by the previous submodels, leading to an increased expressive power compared to previous approaches while limiting the incurred privacy costs. We formally prove that ProGAP ensures edge-level and node-level privacy guarantees for both training and inference stages, and evaluate its performance on benchmark graph datasets. Experimental results demonstrate that ProGAP can achieve up to 5-10% higher accuracy than existing state-of-the-art differentially private GNNs. Our code is available at //github.com/sisaman/ProGAP.

Federated Learning (FL) is a promising distributed learning approach that enables multiple clients to collaboratively train a shared global model. However, recent studies show that FL is vulnerable to various poisoning attacks, which can degrade the performance of global models or introduce backdoors into them. In this paper, we first conduct a comprehensive study on prior FL attacks and detection methods. The results show that all existing detection methods are only effective against limited and specific attacks. Most detection methods suffer from high false positives, which lead to significant performance degradation, especially in not independent and identically distributed (non-IID) settings. To address these issues, we propose FLTracer, the first FL attack provenance framework to accurately detect various attacks and trace the attack time, objective, type, and poisoned location of updates. Different from existing methodologies that rely solely on cross-client anomaly detection, we propose a Kalman filter-based cross-round detection to identify adversaries by seeking the behavior changes before and after the attack. Thus, this makes it resilient to data heterogeneity and is effective even in non-IID settings. To further improve the accuracy of our detection method, we employ four novel features and capture their anomalies with the joint decisions. Extensive evaluations show that FLTracer achieves an average true positive rate of over $96.88\%$ at an average false positive rate of less than $2.67\%$, significantly outperforming SOTA detection methods. \footnote{Code is available at \url{//github.com/Eyr3/FLTracer}.}

Weakly-Supervised Scene Graph Generation (WSSGG) research has recently emerged as an alternative to the fully-supervised approach that heavily relies on costly annotations. In this regard, studies on WSSGG have utilized image captions to obtain unlocalized triplets while primarily focusing on grounding the unlocalized triplets over image regions. However, they have overlooked the two issues involved in the triplet formation process from the captions: 1) Semantic over-simplification issue arises when extracting triplets from captions, where fine-grained predicates in captions are undesirably converted into coarse-grained predicates, resulting in a long-tailed predicate distribution, and 2) Low-density scene graph issue arises when aligning the triplets in the caption with entity/predicate classes of interest, where many triplets are discarded and not used in training, leading to insufficient supervision. To tackle the two issues, we propose a new approach, i.e., Large Language Model for weakly-supervised SGG (LLM4SGG), where we mitigate the two issues by leveraging the LLM's in-depth understanding of language and reasoning ability during the extraction of triplets from captions and alignment of entity/predicate classes with target data. To further engage the LLM in these processes, we adopt the idea of Chain-of-Thought and the in-context few-shot learning strategy. To validate the effectiveness of LLM4SGG, we conduct extensive experiments on Visual Genome and GQA datasets, showing significant improvements in both Recall@K and mean Recall@K compared to the state-of-the-art WSSGG methods. A further appeal is that LLM4SGG is data-efficient, enabling effective model training with a small amount of training images.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司