Large language models (LLMs), trained on vast datasets, can carry biases that manifest in various forms, from overt discrimination to implicit stereotypes. One facet of bias is performance disparities in LLMs, often harming underprivileged groups, such as racial minorities. A common approach to quantifying bias is to use template-based bias probes, which explicitly state group membership (e.g. White) and evaluate if the outcome of a task, sentiment analysis for instance, is invariant to the change of group membership (e.g. change White race to Black). This approach is widely used in bias quantification. However, in this work, we find evidence of an unexpectedly overlooked consequence of using template-based probes for LLM bias quantification. We find that in doing so, text examples associated with White ethnicities appear to be classified as exhibiting negative sentiment at elevated rates. We hypothesize that the scenario arises artificially through a mismatch between the pre-training text of LLMs and the templates used to measure bias through reporting bias, unstated norms that imply group membership without explicit statement. Our finding highlights the potential misleading impact of varying group membership through explicit mention in bias quantification
In recent times, large language models (LLMs) have made significant strides in generating computer code, blurring the lines between code created by humans and code produced by artificial intelligence (AI). As these technologies evolve rapidly, it is crucial to explore how they influence code generation, especially given the risk of misuse in areas like higher education. This paper explores this issue by using advanced classification techniques to differentiate between code written by humans and that generated by ChatGPT, a type of LLM. We employ a new approach that combines powerful embedding features (black-box) with supervised learning algorithms - including Deep Neural Networks, Random Forests, and Extreme Gradient Boosting - to achieve this differentiation with an impressive accuracy of 98%. For the successful combinations, we also examine their model calibration, showing that some of the models are extremely well calibrated. Additionally, we present white-box features and an interpretable Bayes classifier to elucidate critical differences between the code sources, enhancing the explainability and transparency of our approach. Both approaches work well but provide at most 85-88% accuracy. We also show that untrained humans solve the same task not better than random guessing. This study is crucial in understanding and mitigating the potential risks associated with using AI in code generation, particularly in the context of higher education, software development, and competitive programming.
Large language models (LLMs) have shown remarkable progress in code generation, but their generated code often suffers from inefficiency, resulting in longer execution times and higher memory consumption. To address this issue, we propose Self Optimization based on OverheAd Profile (SOAP), a self-optimization framework that utilizes execution overhead profiles to improve the efficiency of LLM-generated code. SOAP first generates code using an LLM, then executes it locally to capture execution time and memory usage profiles. These profiles are fed back to the LLM, which then revises the code to reduce overhead. To evaluate the effectiveness of SOAP, we conduct extensive experiments on the EffiBench, HumanEval, and MBPP with 16 open-source and 6 closed-source models. Our evaluation results demonstrate that through iterative self-optimization, SOAP significantly enhances the efficiency of LLM-generated code. For example, the execution time (ET) of StarCoder2-15B for the EffiBench decreases from 0.93 (s) to 0.12 (s) which reduces 87.1% execution time requirement compared with the initial code. The total memory usage (TMU) of StarCoder2-15B also decreases from 22.02 (Mb*s) to 2.03 (Mb*s), which decreases 90.8% total memory consumption during the execution process. The source code of SOAP was released in //github.com/huangd1999/SOAP.
Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.
When leveraging language models for reasoning tasks, generating explicit chain-of-thought (CoT) steps often proves essential for achieving high accuracy in final outputs. In this paper, we investigate if models can be taught to internalize these CoT steps. To this end, we propose a simple yet effective method for internalizing CoT steps: starting with a model trained for explicit CoT reasoning, we gradually remove the intermediate steps and finetune the model. This process allows the model to internalize the intermediate reasoning steps, thus simplifying the reasoning process while maintaining high performance. Our approach enables a GPT-2 Small model to solve 9-by-9 multiplication with up to 99% accuracy, whereas standard training cannot solve beyond 4-by-4 multiplication. Furthermore, our method proves effective on larger language models, such as Mistral 7B, achieving over 50% accuracy on GSM8K without producing any intermediate steps.
Transformer-based language models are highly effective for code completion, with much research dedicated to enhancing the content of these completions. Despite their effectiveness, these models come with high operational costs and can be intrusive, especially when they suggest too often and interrupt developers who are concentrating on their work. Current research largely overlooks how these models interact with developers in practice and neglects to address when a developer should receive completion suggestions. To tackle this issue, we developed a machine learning model that can accurately predict when to invoke a code completion tool given the code context and available telemetry data. To do so, we collect a dataset of 200k developer interactions with our cross-IDE code completion plugin and train several invocation filtering models. Our results indicate that our small-scale transformer model significantly outperforms the baseline while maintaining low enough latency. We further explore the search space for integrating additional telemetry data into a pre-trained transformer directly and obtain promising results. To further demonstrate our approach's practical potential, we deployed the model in an online environment with 34 developers and provided real-world insights based on 74k actual invocations.
Transfomer-based models have significantly advanced natural language processing, in particular the performance in text classification tasks. Nevertheless, these models face challenges in processing large files, primarily due to their input constraints, which are generally restricted to hundreds or thousands of tokens. Attempts to address this issue in existing models usually consist in extracting only a fraction of the essential information from lengthy inputs, while often incurring high computational costs due to their complex architectures. In this work, we address the challenge of classifying large files from the perspective of correlated multiple instance learning. We introduce LaFiCMIL, a method specifically designed for large file classification. LaFiCMIL is optimized for efficient operation on a single GPU, making it a versatile solution for binary, multi-class, and multi-label classification tasks. We conducted extensive experiments using seven diverse and comprehensive benchmark datasets to assess LaFiCMIL's effectiveness. By integrating BERT for feature extraction, LaFiCMIL demonstrates exceptional performance, setting new benchmarks across all datasets. A notable achievement of our approach is its ability to scale BERT to handle nearly 20,000 tokens while operating on a single GPU with 32GB of memory. This efficiency, coupled with its state-of-the-art performance, highlights LaFiCMIL's potential as a groundbreaking approach in the field of large file classification.
The advancement of large language models has significantly improved natural language processing. However, challenges such as jailbreaks (prompt injections that cause an LLM to follow instructions contrary to its intended use), hallucinations (generating incorrect or misleading information), and comprehension errors remain prevalent. In this report, we present a comparative analysis of the performance of fifteen distinct models, with each model undergoing a standardized test comprising 38 queries across three key metrics: jailbreaks, hallucinations, and comprehension errors. The models are assessed based on the total occurrences of jailbreaks, hallucinations, and comprehension errors. Our work exposes these models' inherent vulnerabilities and challenges the notion of human-level language comprehension of these models. We have empirically analysed the impact of non-standard Unicode characters on LLMs and their safeguarding mechanisms on the best-performing LLMs, including GPT-4, Gemini 1.5 Pro, LlaMA-3-70B, and Claude 3 Opus. By incorporating alphanumeric symbols from Unicode outside the standard Latin block and variants of characters in other languages, we observed a reduction in the efficacy of guardrails implemented through Reinforcement Learning Human Feedback (RLHF). Consequently, these models exhibit heightened vulnerability to content policy breaches and prompt leakage. Our study also suggests a need to incorporate non-standard Unicode text in LLM training data to enhance the capabilities of these models.
Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at //github.com/Eleanor-H/MUSTARD.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.