亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we conduct an empirical investigation of neural query graph ranking approaches for the task of complex question answering over knowledge graphs. We experiment with six different ranking models and propose a novel self-attention based slot matching model which exploits the inherent structure of query graphs, our logical form of choice. Our proposed model generally outperforms the other models on two QA datasets over the DBpedia knowledge graph, evaluated in different settings. In addition, we show that transfer learning from the larger of those QA datasets to the smaller dataset yields substantial improvements, effectively offsetting the general lack of training data.

相關內容

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

In order to facilitate the accesses of general users to knowledge graphs, an increasing effort is being exerted to construct graph-structured queries of given natural language questions. At the core of the construction is to deduce the structure of the target query and determine the vertices/edges which constitute the query. Existing query construction methods rely on question understanding and conventional graph-based algorithms which lead to inefficient and degraded performances facing complex natural language questions over knowledge graphs with large scales. In this paper, we focus on this problem and propose a novel framework standing on recent knowledge graph embedding techniques. Our framework first encodes the underlying knowledge graph into a low-dimensional embedding space by leveraging generalized local knowledge graphs. Given a natural language question, the learned embedding representations of the knowledge graph are utilized to compute the query structure and assemble vertices/edges into the target query. Extensive experiments were conducted on the benchmark dataset, and the results demonstrate that our framework outperforms state-of-the-art baseline models regarding effectiveness and efficiency.

Question answering over knowledge graphs (KGQA) has evolved from simple single-fact questions to complex questions that require graph traversal and aggregation. We propose a novel approach for complex KGQA that uses unsupervised message passing, which propagates confidence scores obtained by parsing an input question and matching terms in the knowledge graph to a set of possible answers. First, we identify entity, relationship, and class names mentioned in a natural language question, and map these to their counterparts in the graph. Then, the confidence scores of these mappings propagate through the graph structure to locate the answer entities. Finally, these are aggregated depending on the identified question type. This approach can be efficiently implemented as a series of sparse matrix multiplications mimicking joins over small local subgraphs. Our evaluation results show that the proposed approach outperforms the state-of-the-art on the LC-QuAD benchmark. Moreover, we show that the performance of the approach depends only on the quality of the question interpretation results, i.e., given a correct relevance score distribution, our approach always produces a correct answer ranking. Our error analysis reveals correct answers missing from the benchmark dataset and inconsistencies in the DBpedia knowledge graph. Finally, we provide a comprehensive evaluation of the proposed approach accompanied with an ablation study and an error analysis, which showcase the pitfalls for each of the question answering components in more detail.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Question Answering (QA) systems provide easy access to the vast amount of knowledge without having to know the underlying complex structure of the knowledge. The research community has provided ad hoc solutions to the key QA tasks, including named entity recognition and disambiguation, relation extraction and query building. Furthermore, some have integrated and composed these components to implement many tasks automatically and efficiently. However, in general, the existing solutions are limited to simple and short questions and still do not address complex questions composed of several sub-questions. Exploiting the answer to complex questions is further challenged if it requires integrating knowledge from unstructured data sources, i.e., textual corpus, as well as structured data sources, i.e., knowledge graphs. In this paper, an approach (HCqa) is introduced for dealing with complex questions requiring federating knowledge from a hybrid of heterogeneous data sources (structured and unstructured). We contribute in developing (i) a decomposition mechanism which extracts sub-questions from potentially long and complex input questions, (ii) a novel comprehensive schema, first of its kind, for extracting and annotating relations, and (iii) an approach for executing and aggregating the answers of sub-questions. The evaluation of HCqa showed a superior accuracy in the fundamental tasks, such as relation extraction, as well as the federation task.

One of the main challenges in ranking is embedding the query and document pairs into a joint feature space, which can then be fed to a learning-to-rank algorithm. To achieve this representation, the conventional state of the art approaches perform extensive feature engineering that encode the similarity of the query-answer pair. Recently, deep-learning solutions have shown that it is possible to achieve comparable performance, in some settings, by learning the similarity representation directly from data. Unfortunately, previous models perform poorly on longer texts, or on texts with significant portion of irrelevant information, or which are grammatically incorrect. To overcome these limitations, we propose a novel ranking algorithm for question answering, QARAT, which uses an attention mechanism to learn on which words and phrases to focus when building the mutual representation. We demonstrate superior ranking performance on several real-world question-answer ranking datasets, and provide visualization of the attention mechanism to otter more insights into how our models of attention could benefit ranking for difficult question answering challenges.

The AI2 Reasoning Challenge (ARC), a new benchmark dataset for question answering (QA) has been recently released. ARC only contains natural science questions authored for human exams, which are hard to answer and require advanced logic reasoning. On the ARC Challenge Set, existing state-of-the-art QA systems fail to significantly outperform random baseline, reflecting the difficult nature of this task. In this paper, we propose a novel framework for answering science exam questions, which mimics human solving process in an open-book exam. To address the reasoning challenge, we construct contextual knowledge graphs respectively for the question itself and supporting sentences. Our model learns to reason with neural embeddings of both knowledge graphs. Experiments on the ARC Challenge Set show that our model outperforms the previous state-of-the-art QA systems.

Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.

While conversing with chatbots, humans typically tend to ask many questions, a significant portion of which can be answered by referring to large-scale knowledge graphs (KG). While Question Answering (QA) and dialog systems have been studied independently, there is a need to study them closely to evaluate such real-world scenarios faced by bots involving both these tasks. Towards this end, we introduce the task of Complex Sequential QA which combines the two tasks of (i) answering factual questions through complex inferencing over a realistic-sized KG of millions of entities, and (ii) learning to converse through a series of coherently linked QA pairs. Through a labor intensive semi-automatic process, involving in-house and crowdsourced workers, we created a dataset containing around 200K dialogs with a total of 1.6M turns. Further, unlike existing large scale QA datasets which contain simple questions that can be answered from a single tuple, the questions in our dialogs require a larger subgraph of the KG. Specifically, our dataset has questions which require logical, quantitative, and comparative reasoning as well as their combinations. This calls for models which can: (i) parse complex natural language questions, (ii) use conversation context to resolve coreferences and ellipsis in utterances, (iii) ask for clarifications for ambiguous queries, and finally (iv) retrieve relevant subgraphs of the KG to answer such questions. However, our experiments with a combination of state of the art dialog and QA models show that they clearly do not achieve the above objectives and are inadequate for dealing with such complex real world settings. We believe that this new dataset coupled with the limitations of existing models as reported in this paper should encourage further research in Complex Sequential QA.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司