亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work focuses on dimension-reduction techniques for modelling conditional extreme values. Specifically, we investigate the idea that extreme values of a response variable can be explained by nonlinear functions derived from linear projections of an input random vector. In this context, the estimation of projection directions is examined, as approached by the Extreme Partial Least Squares (EPLS) method--an adaptation of the original Partial Least Squares (PLS) method tailored to the extreme-value framework. Further, a novel interpretation of EPLS directions as maximum likelihood estimators is introduced, utilizing the von Mises-Fisher distribution applied to hyperballs. The dimension reduction process is enhanced through the Bayesian paradigm, enabling the incorporation of prior information into the projection direction estimation. The maximum a posteriori estimator is derived in two specific cases, elucidating it as a regularization or shrinkage of the EPLS estimator. We also establish its asymptotic behavior as the sample size approaches infinity. A simulation data study is conducted in order to assess the practical utility of our proposed method. This clearly demonstrates its effectiveness even in moderate data problems within high-dimensional settings. Furthermore, we provide an illustrative example of the method's applicability using French farm income data, highlighting its efficacy in real-world scenarios.

相關內容

In this paper, we investigate a new problem called narrative action evaluation (NAE). NAE aims to generate professional commentary that evaluates the execution of an action. Unlike traditional tasks such as score-based action quality assessment and video captioning involving superficial sentences, NAE focuses on creating detailed narratives in natural language. These narratives provide intricate descriptions of actions along with objective evaluations. NAE is a more challenging task because it requires both narrative flexibility and evaluation rigor. One existing possible solution is to use multi-task learning, where narrative language and evaluative information are predicted separately. However, this approach results in reduced performance for individual tasks because of variations between tasks and differences in modality between language information and evaluation information. To address this, we propose a prompt-guided multimodal interaction framework. This framework utilizes a pair of transformers to facilitate the interaction between different modalities of information. It also uses prompts to transform the score regression task into a video-text matching task, thus enabling task interactivity. To support further research in this field, we re-annotate the MTL-AQA and FineGym datasets with high-quality and comprehensive action narration. Additionally, we establish benchmarks for NAE. Extensive experiment results prove that our method outperforms separate learning methods and naive multi-task learning methods. Data and code are released at //github.com/shiyi-zh0408/NAE_CVPR2024.

Existing work in fairness auditing assumes that each audit is performed independently. In this paper, we consider multiple agents working together, each auditing the same platform for different tasks. Agents have two levers: their collaboration strategy, with or without coordination beforehand, and their strategy for sampling appropriate data points. We theoretically compare the interplay of these levers. Our main findings are that (i) collaboration is generally beneficial for accurate audits, (ii) basic sampling methods often prove to be effective, and (iii) counter-intuitively, extensive coordination on queries often deteriorates audits accuracy as the number of agents increases. Experiments on three large datasets confirm our theoretical results. Our findings motivate collaboration during fairness audits of platforms that use ML models for decision-making.

In this work, we present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction. Using medical images of the Open Knowledge-Based Planning Challenge dataset, we found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training. This was achieved only after reformulating the original loss function for a stable implementation. We found that (i)epistemic uncertainty was highly correlated with prediction errors, with various association indices comparable or stronger than those for Monte-Carlo Dropout and Deep Ensemble methods, (ii)the median error varied with uncertainty threshold much more linearly for epistemic uncertainty in Deep Evidential Learning relative to these other two conventional frameworks, indicative of a more uniformly calibrated sensitivity to model errors, (iii)relative to epistemic uncertainty, aleatoric uncertainty demonstrated a more significant shift in its distribution in response to Gaussian noise added to CT intensity, compatible with its interpretation as reflecting data noise. Collectively, our results suggest that Deep Evidential Learning is a promising approach that can endow deep-learning models in radiotherapy dose prediction with statistical robustness. Towards enhancing its clinical relevance, we demonstrate how we can use such a model to construct the predicted Dose-Volume-Histograms' confidence intervals.

We introduce and investigate a powerful hyper logical framework in the linear-time setting, we call generalized HyperLTL with stuttering and contexts (GHyperLTL_SC for short). GHyperLTL_SC unifies known asynchronous extensions of HyperLTL and the well-known extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous perfect recall semantics. As a main contribution, we individuate a meaningful fragment of GHyperLTL_SC, we call simple GHyperLTL_SC, with a decidable model-checking problem, which is more expressive than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable model-checking problem. Simple GHyperLTL_SC subsumes KLTL under the synchronous semantics and the one-agent fragment of KLTL under the asynchronous semantics, and to the best of our knowledge, it represents the unique hyper logic with a decidable model-checking problem which can express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify the relevance of simple GHyperLTL_SC by showing that it can express diagnosability properties, interesting classes of information-flow security policies, both in the synchronous and asynchronous settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).

We study the problem of actively learning a non-parametric choice model based on consumers' decisions. We present a negative result showing that such choice models may not be identifiable. To overcome the identifiability problem, we introduce a directed acyclic graph (DAG) representation of the choice model. This representation provably encodes all the information about the choice model which can be inferred from the available data, in the sense that it permits computing all choice probabilities. We establish that given exact choice probabilities for a collection of item sets, one can reconstruct the DAG. However, attempting to extend this methodology to estimate the DAG from noisy choice frequency data obtained during an active learning process leads to inaccuracies. To address this challenge, we present an inclusion-exclusion approach that effectively manages error propagation across DAG levels, leading to a more accurate estimate of the DAG. Utilizing this technique, our algorithm estimates the DAG representation of an underlying non-parametric choice model. The algorithm operates efficiently (in polynomial time) when the set of frequent rankings is drawn uniformly at random. It learns the distribution over the most popular items among frequent preference types by actively and repeatedly offering assortments of items and observing the chosen item. We demonstrate that our algorithm more effectively recovers a set of frequent preferences on both synthetic and publicly available datasets on consumers' preferences, compared to corresponding non-active learning estimation algorithms. These findings underscore the value of our algorithm and the broader applicability of active-learning approaches in modeling consumer behavior.

Neural architecture-based recommender systems have achieved tremendous success in recent years. However, when dealing with highly sparse data, they still fall short of expectation. Self-supervised learning (SSL), as an emerging technique to learn with unlabeled data, recently has drawn considerable attention in many fields. There is also a growing body of research proceeding towards applying SSL to recommendation for mitigating the data sparsity issue. In this survey, a timely and systematical review of the research efforts on self-supervised recommendation (SSR) is presented. Specifically, we propose an exclusive definition of SSR, on top of which we build a comprehensive taxonomy to divide existing SSR methods into four categories: contrastive, generative, predictive, and hybrid. For each category, the narrative unfolds along its concept and formulation, the involved methods, and its pros and cons. Meanwhile, to facilitate the development and evaluation of SSR models, we release an open-source library SELFRec, which incorporates multiple benchmark datasets and evaluation metrics, and has implemented a number of state-of-the-art SSR models for empirical comparison. Finally, we shed light on the limitations in the current research and outline the future research directions.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

北京阿比特科技有限公司