亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blind deconvolution is an ill-posed problem arising in various fields ranging from microscopy to astronomy. The ill-posed nature of the problem requires adequate priors to arrive to a desirable solution. Recently, it has been shown that deep learning architectures can serve as an image generation prior during unsupervised blind deconvolution optimization, however often exhibiting a performance fluctuation even on a single image. We propose to use Wiener-deconvolution to guide the image generator during optimization by providing it a sharpened version of the blurry image using an auxiliary kernel estimate starting from a Gaussian. We observe that the high-frequency artifacts of deconvolution are reproduced with a delay compared to low-frequency features. In addition, the image generator reproduces low-frequency features of the deconvolved image faster than that of a blurry image. We embed the computational process in a constrained optimization framework and show that the proposed method yields higher stability and performance across multiple datasets. In addition, we provide the code.

相關內容

A significant number of researchers have applied deep learning methods to image fusion. However, most works require a large amount of training data or depend on pre-trained models or frameworks to capture features from source images. This is inevitably hampered by a shortage of training data or a mismatch between the framework and the actual problem. Deep Image Prior (DIP) has been introduced to exploit convolutional neural networks' ability to synthesize the 'prior' in the input image. However, the original design of DIP is hard to be generalized to multi-image processing problems, particularly for image fusion. Therefore, we propose a new image fusion technique that extends DIP to fusion tasks formulated as inverse problems. Additionally, we apply a multi-channel approach to enhance DIP's effect further. The evaluation is conducted with several commonly used image fusion assessment metrics. The results are compared with state-of-the-art image fusion methods. Our method outperforms these techniques for a range of metrics. In particular, it is shown to provide the best objective results for most metrics when applied to medical images.

Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.

It is challenging for weakly supervised object detection network to precisely predict the positions of the objects, since there are no instance-level category annotations. Most existing methods tend to solve this problem by using a two-phase learning procedure, i.e., multiple instance learning detector followed by a fully supervised learning detector with bounding-box regression. Based on our observation, this procedure may lead to local minima for some object categories. In this paper, we propose to jointly train the two phases in an end-to-end manner to tackle this problem. Specifically, we design a single network with both multiple instance learning and bounding-box regression branches that share the same backbone. Meanwhile, a guided attention module using classification loss is added to the backbone for effectively extracting the implicit location information in the features. Experimental results on public datasets show that our method achieves state-of-the-art performance.

Deep neural networks have achieved great successes on the image captioning task. However, most of the existing models depend heavily on paired image-sentence datasets, which are very expensive to acquire. In this paper, we make the first attempt to train an image captioning model in an unsupervised manner. Instead of relying on manually labeled image-sentence pairs, our proposed model merely requires an image set, a sentence corpus, and an existing visual concept detector. The sentence corpus is used to teach the captioning model how to generate plausible sentences. Meanwhile, the knowledge in the visual concept detector is distilled into the captioning model to guide the model to recognize the visual concepts in an image. In order to further encourage the generated captions to be semantically consistent with the image, the image and caption are projected into a common latent space so that they can be used to reconstruct each other. Given that the existing sentence corpora are mainly designed for linguistic research and thus with little reference to image contents, we crawl a large-scale image description corpus of 2 million natural sentences to facilitate the unsupervised image captioning scenario. Experimental results show that our proposed model is able to produce quite promising results without using any labeled training pairs.

Meta-learning is a powerful tool that builds on multi-task learning to learn how to quickly adapt a model to new tasks. In the context of reinforcement learning, meta-learning algorithms can acquire reinforcement learning procedures to solve new problems more efficiently by meta-learning prior tasks. The performance of meta-learning algorithms critically depends on the tasks available for meta-training: in the same way that supervised learning algorithms generalize best to test points drawn from the same distribution as the training points, meta-learning methods generalize best to tasks from the same distribution as the meta-training tasks. In effect, meta-reinforcement learning offloads the design burden from algorithm design to task design. If we can automate the process of task design as well, we can devise a meta-learning algorithm that is truly automated. In this work, we take a step in this direction, proposing a family of unsupervised meta-learning algorithms for reinforcement learning. We describe a general recipe for unsupervised meta-reinforcement learning, and describe an effective instantiation of this approach based on a recently proposed unsupervised exploration technique and model-agnostic meta-learning. We also discuss practical and conceptual considerations for developing unsupervised meta-learning methods. Our experimental results demonstrate that unsupervised meta-reinforcement learning effectively acquires accelerated reinforcement learning procedures without the need for manual task design, significantly exceeds the performance of learning from scratch, and even matches performance of meta-learning methods that use hand-specified task distributions.

Recently, generative adversarial networks (GANs) have shown promising performance in generating realistic images. However, they often struggle in learning complex underlying modalities in a given dataset, resulting in poor-quality generated images. To mitigate this problem, we present a novel approach called mixture of experts GAN (MEGAN), an ensemble approach of multiple generator networks. Each generator network in MEGAN specializes in generating images with a particular subset of modalities, e.g., an image class. Instead of incorporating a separate step of handcrafted clustering of multiple modalities, our proposed model is trained through an end-to-end learning of multiple generators via gating networks, which is responsible for choosing the appropriate generator network for a given condition. We adopt the categorical reparameterization trick for a categorical decision to be made in selecting a generator while maintaining the flow of the gradients. We demonstrate that individual generators learn different and salient subparts of the data and achieve a multiscale structural similarity (MS-SSIM) score of 0.2470 for CelebA and a competitive unsupervised inception score of 8.33 in CIFAR-10.

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.

This paper proposes a generative ScatterNet hybrid deep learning (G-SHDL) network for semantic image segmentation. The proposed generative architecture is able to train rapidly from relatively small labeled datasets using the introduced structural priors. In addition, the number of filters in each layer of the architecture is optimized resulting in a computationally efficient architecture. The G-SHDL network produces state-of-the-art classification performance against unsupervised and semi-supervised learning on two image datasets. Advantages of the G-SHDL network over supervised methods are demonstrated with experiments performed on training datasets of reduced size.

Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.

北京阿比特科技有限公司