亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The logistics industry in Japan is facing a severe shortage of labor. Therefore, there is an increasing need for joint transportation allowing large amounts of cargo to be transported using fewer trucks. In recent years, the use of artificial intelligence and other new technologies has gained wide attention for improving matching efficiency. However, it is difficult to develop a system that can instantly respond to requests because browsing through enormous combinations of two transport lanes is time consuming. In this study, we focus on a form of joint transportation called triangular transportation and enumerate the combinations with high cooperation effects. The proposed algorithm makes good use of hidden inequalities, such as the distance axiom, to narrow down the search range without sacrificing accuracy. Numerical experiments show that the proposed algorithm is thousands of times faster than simple brute force. With this technology as the core engine, we developed a joint transportation matching system. The system has already been in use by over 150 companies as of October 2022, and was featured in a collection of logistics digital transformation cases published by Japan's Ministry of Land, Infrastructure, Transport and Tourism.

相關內容

 日本國位于東亞,是由日本列島(北海道·本州·四國·九州及其相關島嶼),及南西諸島,小笠原諸島等眾島嶼組成的島國。國土面積377,961,73k㎡(62位)。人口總數一億2688萬人(2015年)(10位)。公用語,日本語。國歌,《君が代》,首都,東京都。

This paper introduces ELUA, the Ecological Laboratory for Urban Agriculture, a collaboration among landscape architects, architects and computer scientists who specialize in artificial intelligence, robotics and computer vision. ELUA has two gantry robots, one indoors and the other outside on the rooftop of a 6-story campus building. Each robot can seed, water, weed, and prune in its garden. To support responsive landscape research, ELUA also includes sensor arrays, an AI-powered camera, and an extensive network infrastructure. This project demonstrates a way to integrate artificial intelligence into an evolving urban ecosystem, and encourages landscape architects to develop an adaptive design framework where design becomes a long-term engagement with the environment.

Multilayer networks are in the focus of the current complex network study. In such networks multiple types of links may exist as well as many attributes for nodes. To fully use multilayer -- and other types of complex networks in applications, the merging of various data with topological information renders a powerful analysis. First, we suggest a simple way of representing network data in a data matrix where rows correspond to the nodes, and columns correspond to the data items. The number of columns is allowed to be arbitrary, so that the data matrix can be easily expanded by adding columns. The data matrix can be chosen according to targets of the analysis, and may vary a lot from case to case. Next, we partition the rows of the data matrix into communities using a method which allows maximal compression of the data matrix. For compressing a data matrix, we suggest to extend so called regular decomposition method for non-square matrices. We illustrate our method for several types of data matrices, in particular, distance matrices, and matrices obtained by augmenting a distance matrix by a column of node degrees, or by concatenating several distances matrices corresponding to layers of a multilayer network. We illustrate our method with synthetic power-law graphs and two real networks: an Internet autonomous systems graph and a world airline graph. We compare the outputs of different community recovery methods on these graphs, and discuss how incorporating node degrees as a separate column to the data matrix leads our method to identify community structures well-aligned with tiered hierarchical structures commonly encountered in complex scale-free networks.

Given the proximity of many wireless users and their diversity in consuming local resources (e.g., data-plans, computation and energy resources), device-to-device (D2D) resource sharing is a promising approach towards realizing a sharing economy. This paper adopts an easy-to-implement greedy matching algorithm with distributed fashion and only sub-linear O(log n) parallel complexity (in user number n) for large-scale D2D sharing. Practical cases indicate that the greedy matching's average performance is far better than the worst-case approximation ratio 50% as compared to the optimum. However, there is no rigorous average-case analysis in the literature to back up such encouraging findings and this paper is the first to present such analysis for multiple representative classes of graphs. For 1D linear networks, we prove that our greedy algorithm performs better than 86.5% of the optimum. For 2D grids, though dynamic programming cannot be directly applied, we still prove this average performance ratio to be above 76%. For the more challenging Erdos-Renyi random graphs, we equivalently reduce to the asymptotic analysis of random trees and successfully prove a ratio up to 79%. Finally, we conduct experiments using real data to simulate realistic D2D networks, and show that our analytical performance measure approximates well practical cases.

In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. Shapley allocation is regarded as a fair way for computing the shares of all participants in a cooperative game when the values of all possible coalitions could be quantified. We define a class of value functions for crowd-sourced systems which capture the contributions of the founders and the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These value functions are defined for different scenarios, such as presence of oligopolies or geographic spread of the crowd, taking network effects, including Metcalfe's law, into account. A key result we obtain is that under quite general conditions, the crowd participants are collectively owed a share between $\frac{1}{2}$ to $\frac{2}{3}$ of the total value of the crowd-sourced system. We close with an empirical analysis demonstrating consistency of our results with the compensation offered to the crowd participants in some public internet content sharing companies.

Real-time perception, or streaming perception, is a crucial aspect of autonomous driving that has yet to be thoroughly explored in existing research. To address this gap, we present DAMO-StreamNet, an optimized framework that combines recent advances from the YOLO series with a comprehensive analysis of spatial and temporal perception mechanisms, delivering a cutting-edge solution. The key innovations of DAMO-StreamNet are (1) A robust neck structure incorporating deformable convolution, enhancing the receptive field and feature alignment capabilities (2) A dual-branch structure that integrates short-path semantic features and long-path temporal features, improving motion state prediction accuracy. (3) Logits-level distillation for efficient optimization, aligning the logits of teacher and student networks in semantic space. (4) A real-time forecasting mechanism that updates support frame features with the current frame, ensuring seamless streaming perception during inference. Our experiments demonstrate that DAMO-StreamNet surpasses existing state-of-the-art methods, achieving 37.8% (normal size (600, 960)) and 43.3% (large size (1200, 1920)) sAP without using extra data. This work not only sets a new benchmark for real-time perception but also provides valuable insights for future research. Additionally, DAMO-StreamNet can be applied to various autonomous systems, such as drones and robots, paving the way for real-time perception. The code is at //github.com/zhiqic/DAMO-StreamNet.

There has been growing interest in using QUIC as a transport protocol for the Internet of Things (IoT). QUIC provides several key advantages over TCP and TLS. Since IoT greatly differs from traditional networks in terms of architecture and resources, IoT specific parameter tuning has proven to be of significance. While RFC 9006 offers a guideline for tuning TCP within IoT, we have not found an equivalent for QUIC. This paper is the first of our knowledge to contribute empirically based insights towards tuning QUIC for IoT. To achieve this, we improved our pure HTTP/3 publish-subscribe architecture and rigorously benchmarked it against an alternative: MQTT-over-QUIC. To investigate the impact of transport layer parameters, we ran both applications on Raspberry Pi Zero hardware and collected 8 distinct metrics, while emulating different network conditions and message payloads. We enumerate the points we experimentally identified (notably, relating to authentication, MAX STREAM messages, and timers) and elaborate on how they can be tuned to improve resource consumption and performance. We also found that our application was preferable for reliable time-sensitive dissemination of information.

This paper studies the open problem of conformalized entry prediction in a row/column-exchangeable matrix. The matrix setting presents novel and unique challenges, but there exists little work on this interesting topic. We meticulously define the problem, differentiate it from closely related problems, and rigorously delineate the boundary between achievable and impossible goals. We then propose two practical algorithms. The first method provides a fast emulation of the full conformal prediction, while the second method leverages the technique of algorithmic stability for acceleration. Both methods are computationally efficient and can effectively safeguard coverage validity in presence of arbitrary missing pattern. Further, we quantify the impact of missingness on prediction accuracy and establish fundamental limit results. Empirical evidence from synthetic and real-world data sets corroborates the superior performance of our proposed methods.

The tasks that an autonomous agent is expected to perform are often optional or are incompatible with each other owing to the agent's limited actuation capabilities, specifically the dynamics and control input bounds. We encode tasks as time-dependent state constraints and leverage the advances in multi-objective optimization to formulate the problem of choosing tasks as selection of a feasible subset of constraints that can be satisfied for all time and maximizes a performance metric. We show that this problem, although amenable to reachability or mixed integer model predictive control-based analysis in the offline phase, is NP-Hard in general and therefore requires heuristics to be solved efficiently. When incompatibility in constraints is observed under a given policy that imposes task constraints at each time step in an optimization problem, we assign a Lagrange score to each of these constraints based on the variation in the corresponding Lagrange multipliers over the compatible time horizon. These scores are then used to decide the order in which constraints are dropped in a greedy strategy. We further employ a genetic algorithm to improve upon the greedy strategy. We evaluate our method on a robot waypoint following task when the low-level controllers that impose state constraints are described by Control Barrier Function-based Quadratic Programs and provide a comparison with waypoint selection based on knowledge of backward reachable sets.

This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly adapting these models or using them to guide low-level policy learning, it advocates for using them to generate diversified tasks and scenes at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司