We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E$^2$VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.
High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations based on convex limiting. The key ingredient in the limiting procedure is a low order positivity-preserving discretization based on graph viscosity terms. The proposed limiting strategy is both positivity preserving and discretely entropy-stable for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.
We revisit the Ravine method of Gelfand and Tsetlin from a dynamical system perspective, study its convergence properties, and highlight its similarities and differences with the Nesterov accelerated gradient method. The two methods are closely related. They can be deduced from each other by reversing the order of the extrapolation and gradient operations in their definitions. They benefit from similar fast convergence of values and convergence of iterates for general convex objective functions. We will also establish the high resolution ODE of the Ravine and Nesterov methods, and reveal an additional geometric damping term driven by the Hessian for both methods. This will allow us to prove fast convergence towards zero of the gradients not only for the Ravine method but also for the Nesterov method for the first time. We also highlight connections to other algorithms stemming from more subtle discretization schemes, and finally describe a Ravine version of the proximal-gradient algorithms for general structured smooth + non-smooth convex optimization problems.
Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-$C^1$ are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are $C^1$ smooth almost everywhere, that is, at all vertices and across most edges, and in addition almost (i.e. approximately) $C^1$ smooth across all other edges. Thus, the splines form $H^2$-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-$C^1$ splines are described in an explicit B\'ezier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behavior.
We consider a stabilization method for divergence-conforming B-spline discretizations of the incompressible Navier--Stokes problem wherein jumps in high-order normal derivatives of the velocity field are penalized across interior mesh facets. We prove that this method is pressure robust, consistent, and energy stable, and we show how to select the stabilization parameter appearing in the method so that excessive numerical dissipation is avoided in both the cross-wind direction and in the diffusion-dominated regime. We examine the efficacy of the method using a suite of numerical experiments, and we find the method yields optimal $\textbf{L}^2$ and $\textbf{H}^1$ convergence rates for the velocity field, eliminates spurious small-scale structures that pollute Galerkin approximations, and is effective as an Implicit Large Eddy Simulation (ILES) methodology.
We consider the problem of recovering a signal from the magnitudes of affine measurements, which is also known as {\em affine phase retrieval}. In this paper, we formulate affine phase retrieval as an optimization problem and develop a second-order algorithm based on Newton method to solve it. Besides being able to convert into a phase retrieval problem, affine phase retrieval has its unique advantages in its solution. For example, the linear information in the observation makes it possible to solve this problem with second-order algorithms under complex measurements. Another advantage is that our algorithm doesn't have any special requirements for the initial point, while an appropriate initial value is essential for most non-convex phase retrieval algorithms. Starting from zero, our algorithm generates iteration point by Newton method, and we prove that the algorithm can quadratically converge to the true signal without any ambiguity for both Gaussian measurements and CDP measurements. In addition, we also use some numerical simulations to verify the conclusions and to show the effectiveness of the algorithm.
In this paper, a well-posed simultaneous space-time First Order System Least Squares formulation is constructed of the instationary incompressible Stokes equations with slip boundary conditions. As a consequence of this well-posedness, the minimization over any conforming triple of finite element spaces for velocities, pressure and stress tensor gives a quasi-best approximation from that triple. The formulation is practical in the sense that all norms in the least squares functional can be efficiently evaluated. Being of least squares type, the formulation comes with an efficient and reliable a posteriori error estimator. In addition, a priori error estimates are derived, and numerical results are presented.
A homogenization approach is one of effective strategies to solve multiscale elliptic problems approximately. The finite element heterogeneous multiscale method (FEHMM) which is based on the finite element makes possible to simulate such process numerically. In this paper we introduce a FEHMM scheme for multiscale elliptic problems based on nonconforming spaces. In particular we use the noconforming element with the periodic boundary condition introduced in the companion paper. Theoretical analysis derives a priori error estimates in the standard Sobolev norms. Several numerical results which confirm our analysis are provided.
We introduce simple quadrature rules for the family of nonparametric nonconforming quadrilateral element with four degrees of freedom. Our quadrature rules are motivated by the work of Meng {\it et al.} \cite{meng2018new}. First, we introduce a family of MVP (Mean Value Property)-preserving four DOFs nonconforming elements on the intermediate reference domain introduced by Meng {\it et al.}. Then we design two--points and three--points quadrature rules on the intermediate reference domain. Under the assumption on equal quadrature weights, the deviation from the quadrilateral center of the Gauss points for the two points and three points rules assumes the same quadratic polynomials with constant terms modified. Thus, the two--points rule and three--points rule are constructed at one stroke. The quadrature rules are asymptotically optimal as the mesh size is sufficiently small. Several numerical experiments are carried out, which show efficiency and convergence properties of the new quadrature rules.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.