亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time series classification is a critical task in various domains, such as finance, healthcare, and sensor data analysis. Unsupervised contrastive learning has garnered significant interest in learning effective representations from time series data with limited labels. The prevalent approach in existing contrastive learning methods consists of two separate stages: pre-training the encoder on unlabeled datasets and fine-tuning the well-trained model on a small-scale labeled dataset. However, such two-stage approaches suffer from several shortcomings, such as the inability of unsupervised pre-training contrastive loss to directly affect downstream fine-tuning classifiers, and the lack of exploiting the classification loss which is guided by valuable ground truth. In this paper, we propose an end-to-end model called SLOTS (Semi-supervised Learning fOr Time clasSification). SLOTS receives semi-labeled datasets, comprising a large number of unlabeled samples and a small proportion of labeled samples, and maps them to an embedding space through an encoder. We calculate not only the unsupervised contrastive loss but also measure the supervised contrastive loss on the samples with ground truth. The learned embeddings are fed into a classifier, and the classification loss is calculated using the available true labels. The unsupervised, supervised contrastive losses and classification loss are jointly used to optimize the encoder and classifier. We evaluate SLOTS by comparing it with ten state-of-the-art methods across five datasets. The results demonstrate that SLOTS is a simple yet effective framework. When compared to the two-stage framework, our end-to-end SLOTS utilizes the same input data, consumes a similar computational cost, but delivers significantly improved performance. We release code and datasets at //anonymous.4open.science/r/SLOTS-242E.

相關內容

In large-scale federated and decentralized learning, communication efficiency is one of the most challenging bottlenecks. While gossip communication -- where agents can exchange information with their connected neighbors -- is more cost-effective than communicating with the remote server, it often requires a greater number of communication rounds, especially for large and sparse networks. To tackle the trade-off, we examine the communication efficiency under a semi-decentralized communication protocol, in which agents can perform both agent-to-agent and agent-to-server communication in a probabilistic manner. We design a tailored communication-efficient algorithm over semi-decentralized networks, referred to as PISCO, which inherits the robustness to data heterogeneity thanks to gradient tracking and allows multiple local updates for saving communication. We establish the convergence rate of PISCO for nonconvex problems and show that PISCO enjoys a linear speedup in terms of the number of agents and local updates. Our numerical results highlight the superior communication efficiency of PISCO and its resilience to data heterogeneity and various network topologies.

Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.

Modern time series forecasting methods, such as Transformer and its variants, have shown strong ability in sequential data modeling. To achieve high performance, they usually rely on redundant or unexplainable structures to model complex relations between variables and tune the parameters with large-scale data. Many real-world data mining tasks, however, lack sufficient variables for relation reasoning, and therefore these methods may not properly handle such forecasting problems. With insufficient data, time series appear to be affected by many exogenous variables, and thus, the modeling becomes unstable and unpredictable. To tackle this critical issue, in this paper, we develop a novel algorithmic framework for inferring the intrinsic latent factors implied by the observable time series. The inferred factors are used to form multiple independent and predictable signal components that enable not only sparse relation reasoning for long-term efficiency but also reconstructing the future temporal data for accurate prediction. To achieve this, we introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models to infer the predictable signal components. Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting. The statistical analysis validates the predictability of the learned latent factors.

Network slicing-based communication systems can dynamically and efficiently allocate resources for diversified services. However, due to the limitation of the network interface on channel access and the complexity of the resource allocation, it is challenging to achieve an acceptable solution in the practical system without precise prior knowledge of the dynamics probability model of the service requests. Existing work attempts to solve this problem using deep reinforcement learning (DRL), however, such methods usually require a lot of interaction with the real environment in order to achieve good results. In this paper, a framework consisting of a digital twin and reinforcement learning agents is present to handle the issue. Specifically, we propose to use the historical data and the neural networks to build a digital twin model to simulate the state variation law of the real environment. Then, we use the data generated by the network slicing environment to calibrate the digital twin so that it is in sync with the real environment. Finally, DRL for slice optimization optimizes its own performance in this virtual pre-verification environment. We conducted an exhaustive verification of the proposed digital twin framework to confirm its scalability. Specifically, we propose to use loss landscapes to visualize the generalization of DRL solutions. We explore a distillation-based optimization scheme for lightweight slicing strategies. In addition, we also extend the framework to offline reinforcement learning, where solutions can be used to obtain intelligent decisions based solely on historical data. Numerical simulation experiments show that the proposed digital twin can significantly improve the performance of the slice optimization strategy.

In climate simulations, small-scale processes shape ocean dynamics but remain computationally expensive to resolve directly. For this reason, their contributions are commonly approximated using empirical parameterizations, which lead to significant errors in long-term projections. In this work, we develop parameterizations based on Fourier Neural Operators, showcasing their accuracy and generalizability in comparison to other approaches. Finally, we discuss the potential and limitations of neural networks operating in the frequency domain, paving the way for future investigation.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司