亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many sensor network applications, a fusion center often has additional valuable information, such as context data, which cannot be obtained directly from the sensors. Motivated by this, we study a generalized CEO problem where a CEO has access to context information. The main contribution of this work is twofold. Firstly, we characterize the asymptotically optimal error exponent per rate as the number of sensors and sum rate grow without bound. The proof extends the Berger-Tung coding scheme and the converse argument by Berger et al. (1996) taking into account context information. The resulting expression includes the minimum Chernoff divergence over context information. Secondly, assuming that the sizes of the source and context alphabets are respectively $|\mathcal{X}|$ and $|\mathcal{S}|$, we prove that it is asymptotically optimal to partition all sensors into at most $\binom{|\mathcal{X}|}{2} |\mathcal{S}|$ groups and have the sensors in each group adopt the same encoding scheme. Our problem subsumes the original CEO problem by Berger et al. (1996) as a special case if there is only one letter for context information; in this case, our result tightens its required number of groups from $\binom{|\mathcal{X}|}{2}+2$ to $\binom{|\mathcal{X}|}{2}$. We also numerically demonstrate the effect of context information for a simple Gaussian scenario.

相關內容

 首席執行官(Chief Executive Officer,CEO)是在一個企業中負責日常經營管理的最高級管理人員。

Probabilistic breadth-first traversals (BPTs) are used in many network science and graph machine learning applications. In this paper, we are motivated by the application of BPTs in stochastic diffusion-based graph problems such as influence maximization. These applications heavily rely on BPTs to implement a Monte-Carlo sampling step for their approximations. Given the large sampling complexity, stochasticity of the diffusion process, and the inherent irregularity in real-world graph topologies, efficiently parallelizing these BPTs remains significantly challenging. In this paper, we present a new algorithm to fuse massive number of concurrently executing BPTs with random starts on the input graph. Our algorithm is designed to fuse BPTs by combining separate traversals into a unified frontier on distributed multi-GPU systems. To show the general applicability of the fused BPT technique, we have incorporated it into two state-of-the-art influence maximization parallel implementations (gIM and Ripples). Our experiments on up to 4K nodes of the OLCF Frontier supercomputer ($32,768$ GPUs and $196$K CPU cores) show strong scaling behavior, and that fused BPTs can improve the performance of these implementations up to 34$\times$ (for gIM) and ~360$\times$ (for Ripples).

Control of networked systems, comprised of interacting agents, is often achieved through modeling the underlying interactions. Constructing accurate models of such interactions--in the meantime--can become prohibitive in applications. Data-driven control methods avoid such complications by directly synthesizing a controller from the observed data. In this paper, we propose an algorithm referred to as Data-driven Structured Policy Iteration (D2SPI), for synthesizing an efficient feedback mechanism that respects the sparsity pattern induced by the underlying interaction network. In particular, our algorithm uses temporary "auxiliary" communication links in order to enable the required information exchange on a (smaller) sub-network during the "learning phase" -- links that will be removed subsequently for the final distributed feedback synthesis. We then proceed to show that the learned policy results in a stabilizing structured policy for the entire network. Our analysis is then followed by showing the stability and convergence of the proposed distributed policies throughout the learning phase, exploiting a construct referred to as the "Patterned monoid.'' The performance of D2SPI is then demonstrated using representative simulation scenarios.

To address privacy concerns and reduce network latency, there has been a recent trend of compressing cumbersome recommendation models trained on the cloud and deploying compact recommender models to resource-limited devices for the real-time recommendation. Existing solutions generally overlook device heterogeneity and user heterogeneity. They require devices with the same budget to share the same model and assume the available device resources (e.g., memory) are constant, which is not reflective of reality. Considering device and user heterogeneities as well as dynamic resource constraints, this paper proposes a Personalized Elastic Embedding Learning framework (PEEL) for the on-device recommendation, which generates Personalized Elastic Embeddings (PEEs) for devices with various memory budgets in a once-for-all manner, adapting to new or dynamic budgets, and addressing user preference diversity by assigning personalized embeddings for different groups of users. Specifically, it pretrains a global embedding table with collected user-item interaction instances and clusters users into groups. Then, it refines the embedding tables with local interaction instances within each group. PEEs are generated from the group-wise embedding blocks and their weights that indicate the contribution of each embedding block to the local recommendation performance. Given a memory budget, PEEL efficiently generates PEEs by selecting embedding blocks with the largest weights, making it adaptable to dynamic memory budgets on devices. Furthermore, a diversity-driven regularizer is implemented to encourage the expressiveness of embedding blocks, and a controller is utilized to optimize the weights. Extensive experiments are conducted on two public datasets, and the results show that PEEL yields superior performance on devices with heterogeneous and dynamic memory budgets.

In task-oriented dialogue, a system often needs to follow a sequence of actions, called a workflow, that complies with a set of guidelines in order to complete a task. In this paper, we propose the novel problem of multi-step workflow action prediction, in which the system predicts multiple future workflow actions. Accurate prediction of multiple steps allows for multi-turn automation, which can free up time to focus on more complex tasks. We propose three modeling approaches that are simple to implement yet lead to more action automation: 1) fine-tuning on a training dataset, 2) few-shot in-context learning leveraging retrieval and large language model prompting, and 3) zero-shot graph traversal, which aggregates historical action sequences into a graph for prediction. We show that multi-step action prediction produces features that improve accuracy on downstream dialogue tasks like predicting task success, and can increase automation of steps by 20% without requiring as much feedback from a human overseeing the system.

Neural networks build the foundation of several intelligent systems, which, however, are known to be easily fooled by adversarial examples. Recent advances made these attacks possible even in air-gapped scenarios, where the autonomous system observes its surroundings by, e.g., a camera. We extend these ideas in our research and evaluate the robustness of multi-camera setups against such physical adversarial examples. This scenario becomes ever more important with the rise in popularity of autonomous vehicles, which fuse the information of several cameras for their driving decision. While we find that multi-camera setups provide some robustness towards past attack methods, we see that this advantage reduces when optimizing on multiple perspectives at once. We propose a novel attack method that we call Transcender-MC, where we incorporate online 3D renderings and perspective projections in the training process. Moreover, we motivate that certain data augmentation techniques can facilitate the generation of successful adversarial examples even further. Transcender-MC is 11% more effective in successfully attacking multi-camera setups than state-of-the-art methods. Our findings offer valuable insights regarding the resilience of object detection in a setup with multiple cameras and motivate the need of developing adequate defense mechanisms against them.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司