Click-through rate (CTR) prediction is a crucial issue in recommendation systems. There has been an emergence of various public CTR datasets. However, existing datasets primarily suffer from the following limitations. Firstly, users generally click different types of items from multiple scenarios, and modeling from multiple scenarios can provide a more comprehensive understanding of users. Existing datasets only include data for the same type of items from a single scenario. Secondly, multi-modal features are essential in multi-scenario prediction as they address the issue of inconsistent ID encoding between different scenarios. The existing datasets are based on ID features and lack multi-modal features. Third, a large-scale dataset can provide a more reliable evaluation of models, fully reflecting the performance differences between models. The scale of existing datasets is around 100 million, which is relatively small compared to the real-world CTR prediction. To address these limitations, we propose AntM$^{2}$C, a Multi-Scenario Multi-Modal CTR dataset based on industrial data from Alipay. Specifically, AntM$^{2}$C provides the following advantages: 1) It covers CTR data of 5 different types of items, providing insights into the preferences of users for different items, including advertisements, vouchers, mini-programs, contents, and videos. 2) Apart from ID-based features, AntM$^{2}$C also provides 2 multi-modal features, raw text and image features, which can effectively establish connections between items with different IDs. 3) AntM$^{2}$C provides 1 billion CTR data with 200 features, including 200 million users and 6 million items. It is currently the largest-scale CTR dataset available. Based on AntM$^{2}$C, we construct several typical CTR tasks and provide comparisons with baseline methods. The dataset homepage is available at //www.atecup.cn/home.
Cardiac magnetic resonance imaging (CMR) has been widely used in clinical practice for the medical diagnosis of cardiac diseases. However, the long acquisition time hinders its development in real-time applications. Here, we propose a novel self-consistency guided multi-prior learning framework named $k$-$t$ CLAIR to exploit spatiotemporal correlations from highly undersampled data for accelerated dynamic parallel MRI reconstruction. The $k$-$t$ CLAIR progressively reconstructs faithful images by leveraging multiple complementary priors learned in the $x$-$t$, $x$-$f$, and $k$-$t$ domains in an iterative fashion, as dynamic MRI exhibits high spatiotemporal redundancy. Additionally, $k$-$t$ CLAIR incorporates calibration information for prior learning, resulting in a more consistent reconstruction. Experimental results on cardiac cine and T1W/T2W images demonstrate that $k$-$t$ CLAIR achieves high-quality dynamic MR reconstruction in terms of both quantitative and qualitative performance.
Gradient-based methods enable efficient search capabilities in high dimensions. However, in order to apply them effectively in offline optimization paradigms such as offline Reinforcement Learning (RL) or Imitation Learning (IL), we require a more careful consideration of how uncertainty estimation interplays with first-order methods that attempt to minimize them. We study smoothed distance to data as an uncertainty metric, and claim that it has two beneficial properties: (i) it allows gradient-based methods that attempt to minimize uncertainty to drive iterates to data as smoothing is annealed, and (ii) it facilitates analysis of model bias with Lipschitz constants. As distance to data can be expensive to compute online, we consider settings where we need amortize this computation. Instead of learning the distance however, we propose to learn its gradients directly as an oracle for first-order optimizers. We show these gradients can be efficiently learned with score-matching techniques by leveraging the equivalence between distance to data and data likelihood. Using this insight, we propose Score-Guided Planning (SGP), a planning algorithm for offline RL that utilizes score-matching to enable first-order planning in high-dimensional problems, where zeroth-order methods were unable to scale, and ensembles were unable to overcome local minima. Website: //sites.google.com/view/score-guided-planning/home
Synthetic training data has gained prominence in numerous learning tasks and scenarios, offering advantages such as dataset augmentation, generalization evaluation, and privacy preservation. Despite these benefits, the efficiency of synthetic data generated by current methodologies remains inferior when training advanced deep models exclusively, limiting its practical utility. To address this challenge, we analyze the principles underlying training data synthesis for supervised learning and elucidate a principled theoretical framework from the distribution-matching perspective that explicates the mechanisms governing synthesis efficacy. Through extensive experiments, we demonstrate the effectiveness of our synthetic data across diverse image classification tasks, both as a replacement for and augmentation to real datasets, while also benefits challenging tasks such as out-of-distribution generalization and privacy preservation.
Meanings of words change over time and across domains. Detecting the semantic changes of words is an important task for various NLP applications that must make time-sensitive predictions. We consider the problem of predicting whether a given target word, $w$, changes its meaning between two different text corpora, $\mathcal{C}_1$ and $\mathcal{C}_2$. For this purpose, we propose $\textit{Swapping-based Semantic Change Detection}$ (SSCD), an unsupervised method that randomly swaps contexts between $\mathcal{C}_1$ and $\mathcal{C}_2$ where $w$ occurs. We then look at the distribution of contextualised word embeddings of $w$, obtained from a pretrained masked language model (MLM), representing the meaning of $w$ in its occurrence contexts in $\mathcal{C}_1$ and $\mathcal{C}_2$. Intuitively, if the meaning of $w$ does not change between $\mathcal{C}_1$ and $\mathcal{C}_2$, we would expect the distributions of contextualised word embeddings of $w$ to remain the same before and after this random swapping process. Despite its simplicity, we demonstrate that even by using pretrained MLMs without any fine-tuning, our proposed context swapping method accurately predicts the semantic changes of words in four languages (English, German, Swedish, and Latin) and across different time spans (over 50 years and about five years). Moreover, our method achieves significant performance improvements compared to strong baselines for the English semantic change prediction task. Source code is available at //github.com/a1da4/svp-swap .
Trade restrictions, the COVID-19 pandemic, and geopolitical conflicts has significantly exposed vulnerabilities within traditional global supply chains. These events underscore the need for organisations to establish more resilient and flexible supply chains. To address these challenges, the concept of the autonomous supply chain (ASC), characterised by predictive and self-decision-making capabilities, has recently emerged as promising solution. However, research on ASCs is relatively limited, with no existing studies on their implementations. This paper aims to address this gap by presenting an implementation of ASC using a multi-agent approach. It proposes a methodology for the analysis and design of such an agent-based ASC system (A2SC). This paper provides a concrete case study, the autonomous meat supply chain, which showcases the practical implementation of the A2SC system using the proposed methodology. Additionally, a system architecture and a toolkit for developing A2SC systems are presented. Despite with limitations, this paper demonstrates a promising approach for implementing an effective ASC system.
Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.
Large language models (LLMs) have been used for diverse tasks in natural language processing (NLP), yet remain under-explored for task-oriented dialogue systems (TODS), especially for end-to-end TODS. We present InstructTODS, a novel off-the-shelf framework for zero-shot end-to-end task-oriented dialogue systems that can adapt to diverse domains without fine-tuning. By leveraging LLMs, InstructTODS generates a proxy belief state that seamlessly translates user intentions into dynamic queries for efficient interaction with any KB. Our extensive experiments demonstrate that InstructTODS achieves comparable performance to fully fine-tuned TODS in guiding dialogues to successful completion without prior knowledge or task-specific data. Furthermore, a rigorous human evaluation of end-to-end TODS shows that InstructTODS produces dialogue responses that notably outperform both the gold responses and the state-of-the-art TODS in terms of helpfulness, informativeness, and humanness. Moreover, the effectiveness of LLMs in TODS is further supported by our comprehensive evaluations on TODS subtasks: dialogue state tracking, intent classification, and response generation. Code and implementations could be found here //github.com/WillyHC22/InstructTODS/
Case-based reasoning (CBR) as a methodology for problem-solving can use any appropriate computational technique. This position paper argues that CBR researchers have somewhat overlooked recent developments in deep learning and large language models (LLMs). The underlying technical developments that have enabled the recent breakthroughs in AI have strong synergies with CBR and could be used to provide a persistent memory for LLMs to make progress towards Artificial General Intelligence.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.