We present Tachis, a higher-order separation logic to reason about the expected cost of probabilistic programs. Inspired by the uses of time credits for reasoning about the running time of deterministic programs, we introduce a novel notion of probabilistic cost credit. Probabilistic cost credits are a separation logic resource that can be used to pay for the cost of operations in programs, and that can be distributed across all possible branches of sampling instructions according to their weight, thus enabling us to reason about expected cost. The representation of cost credits as separation logic resources gives Tachis a great deal of flexibility and expressivity. In particular, it permits reasoning about amortized expected cost by storing excess credits as potential into data structures to pay for future operations. Tachis further supports a range of cost models, including running time and entropy usage. We showcase the versatility of this approach by applying our techniques to prove upper bounds on the expected cost of a variety of probabilistic algorithms and data structures, including randomized quicksort, hash tables, and meldable heaps. All of our results have been mechanized using Coq, Iris, and the Coquelicot real analysis library.
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts, necessitating query rewriting to better describe user's information needs. However, traditional context-based rewriting has minimal enhancement on downstream generation tasks due to the lengthy process from query rewriting to response generation. Some researchers try to utilize reinforcement learning with generation feedback to assist the rewriter, but these sparse rewards provide little guidance in most cases, leading to unstable training and generation results. We find that user's needs are also reflected in the gold document, retrieved documents and ground truth. Therefore, by feeding back these multi-aspect dense rewards to query rewriting, more stable and satisfactory responses can be achieved. In this paper, we propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results. Specifically, we first use manual data to train a T5 model for the rewriter initialization. Next, we design three metrics as reinforcement learning feedback: the similarity between the rewritten query and the gold document, the ranking metrics, and ROUGE between the generation and the ground truth. Inspired by RLAIF, we train three kinds of reward models for the above metrics to achieve more efficient training. Finally, we combine the scores of these reward models as feedback, and use PPO algorithm to explore the optimal query rewriting strategy. Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
Existing work only effective on a given number of GPUs, often neglecting the complexities involved in manually determining the specific types and quantities of GPUs needed, which can be a significant burden for developers. To address this issue, we propose Frenzy, a memory-aware serverless computing method for heterogeneous GPU clusters. Frenzy allows users to submit models without worrying about underlying hardware resources. First, Frenzy predicts the required number and type of GPUs by estimating the GPU memory usage of the LLM. Then, it employs a low-overhead heterogeneity-aware scheduling method to optimize training efficiency. We validated Frenzy's performance by conducting multi-task LLM training tests on a heterogeneous GPU cluster with three different GPU types. The results show that Frenzy's memory usage prediction accuracy exceeds 92\%, the scheduling overhead is reduced by 10 times, and it reduces the average job completion time by 12\% to 18\% compared to state-of-the-art methods.
Graphs are expressive abstractions representing more effectively relationships in data and enabling data science tasks. They are also a widely adopted paradigm in causal inference focusing on causal directed acyclic graphs. Causal DAGs (Directed Acyclic Graphs) are manually curated by domain experts, but they are never validated, stored and integrated as data artifacts in a graph data management system. In this paper, we delineate our vision to align these two paradigms, namely causal analysis and property graphs, the latter being the cornerstone of modern graph databases. To articulate this vision, a paradigm shift is required leading to rethinking property graph data models with hypernodes and structural equations, graph query semantics and query constructs, and the definition of graph views to account for causality operators. Moreover, several research problems and challenges arise aiming at automatically extracting causal models from the underlying graph observational data, aligning and integrating disparate causal graph models into unified ones along with their maintenance upon the changes in the underlying data. The above vision will allow to make graph databases aware of causal knowledge and pave the way to data-driven personalized decision-making in several scientific fields.
Synthesizing diverse dexterous grasps from uncertain partial observation is an important yet challenging task for physically intelligent embodiments. Previous works on generative grasp synthesis fell short of precisely capturing the complex grasp distribution and reasoning about shape uncertainty in the unstructured and often partially perceived reality. In this work, we introduce a novel model that can generate diverse grasps for a multi-fingered hand while introspectively handling perceptual uncertainty and recognizing unknown object geometry to avoid performance degradation. Specifically, we devise a Deep Latent Variable Model (DLVM) based on Normalizing Flows (NFs), facilitating hierarchical and expressive latent representation for modeling versatile grasps. Our model design counteracts typical pitfalls of its popular alternative in generative grasping, i.e., conditional Variational Autoencoders (cVAEs) whose performance is limited by mode collapse and miss-specified prior issues. Moreover, the resultant feature hierarchy and the exact flow likelihood computation endow our model with shape-aware introspective capabilities, enabling it to quantify the shape uncertainty of partial point clouds and detect objects of novel geometry. We further achieve performance gain by fusing this information with a discriminative grasp evaluator, facilitating a novel hybrid way for grasp evaluation. Comprehensive simulated and real-world experiments show that the proposed idea gains superior performance and higher run-time efficiency against strong baselines, including diffusion models. We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.
To derive valuable insights from statistics, machine learning applications frequently analyze substantial amounts of data. In this work, we address the problem of designing efficient secure techniques to probe large datasets which allow a scientist to conduct large-scale medical studies over specific attributes of patients' records, while maintaining the privacy of his model. We introduce a set of composable homomorphic operations and show how to combine private functions evaluation with private thresholds via approximate fully homomorphic encryption. This allows us to design a new system named TETRIS, which solves the real-world use case of private functional exploration of large databases, where the statistical criteria remain private to the server owning the patients' records. Our experiments show that TETRIS achieves practical performance over a large dataset of patients even for the evaluation of elaborate statements composed of linear and nonlinear functions. It is possible to extract private insights from a database of hundreds of thousands of patient records within only a few minutes on a single thread, with an amortized time per database entry smaller than 2ms.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.