Neural Radiance Fields (NeRF) is a revolutionary approach for rendering scenes by sampling a single ray per pixel and it has demonstrated impressive capabilities in novel-view synthesis from static scene images. However, in practice, we usually need to recover NeRF from unconstrained image collections, which poses two challenges: 1) the images often have dynamic changes in appearance because of different capturing time and camera settings; 2) the images may contain transient objects such as humans and cars, leading to occlusion and ghosting artifacts. Conventional approaches seek to address these challenges by locally utilizing a single ray to synthesize a color of a pixel. In contrast, humans typically perceive appearance and objects by globally utilizing information across multiple pixels. To mimic the perception process of humans, in this paper, we propose Cross-Ray NeRF (CR-NeRF) that leverages interactive information across multiple rays to synthesize occlusion-free novel views with the same appearances as the images. Specifically, to model varying appearances, we first propose to represent multiple rays with a novel cross-ray feature and then recover the appearance by fusing global statistics, i.e., feature covariance of the rays and the image appearance. Moreover, to avoid occlusion introduced by transient objects, we propose a transient objects handler and introduce a grid sampling strategy for masking out the transient objects. We theoretically find that leveraging correlation across multiple rays promotes capturing more global information. Moreover, extensive experimental results on large real-world datasets verify the effectiveness of CR-NeRF.
Camera Image Signal Processing (ISP) pipelines can get appealing results in different image signal processing tasks. Nonetheless, the majority of these methods, including those employing an encoder-decoder deep architecture for the task, typically utilize a uniform filter applied consistently across the entire image. However, it is natural to view a camera image as heterogeneous, as the color intensity and the artificial noise are distributed vastly differently, even across the two-dimensional domain of a single image. Varied Moire ringing, motion blur, color-bleaching, or lens-based projection distortions can all potentially lead to a heterogeneous image artifact filtering problem. In this paper, we present a specific patch-based, local subspace deep neural network that improves Camera ISP to be robust to heterogeneous artifacts (especially image denoising). We call our three-fold deep-trained model the Patch Subspace Learning Autoencoder (PSL-AE). The PSL-AE model does not make assumptions regarding uniform levels of image distortion. Instead, it first encodes patches extracted from noisy a nd clean image pairs, with different artifact types or distortion levels, by contrastive learning. Then, the patches of each image are encoded into corresponding soft clusters within their suitable latent sub-space, utilizing a prior mixture model. Furthermore, the decoders undergo training in an unsupervised manner, specifically trained for the image patches present in each cluster. The experiments highlight the adaptability and efficacy through enhanced heterogeneous filtering, both from synthesized artifacts but also realistic SIDD image pairs.
Merging multi-exposure images is a common approach for obtaining high dynamic range (HDR) images, with the primary challenge being the avoidance of ghosting artifacts in dynamic scenes. Recent methods have proposed using deep neural networks for deghosting. However, the methods typically rely on sufficient data with HDR ground-truths, which are difficult and costly to collect. In this work, to eliminate the need for labeled data, we propose SelfHDR, a self-supervised HDR reconstruction method that only requires dynamic multi-exposure images during training. Specifically, SelfHDR learns a reconstruction network under the supervision of two complementary components, which can be constructed from multi-exposure images and focus on HDR color as well as structure, respectively. The color component is estimated from aligned multi-exposure images, while the structure one is generated through a structure-focused network that is supervised by the color component and an input reference (\eg, medium-exposure) image. During testing, the learned reconstruction network is directly deployed to predict an HDR image. Experiments on real-world images demonstrate our SelfHDR achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones. Codes are available at //github.com/cszhilu1998/SelfHDR
We propose a new method to reconstruct the 3D human body from RGB-D images with occlusions. The foremost challenge is the incompleteness of the RGB-D data due to occlusions between the body and the environment, leading to implausible reconstructions that suffer from severe human-scene penetration. To reconstruct a semantically and physically plausible human body, we propose to reduce the solution space based on scene information and prior knowledge. Our key idea is to constrain the solution space of the human body by considering the occluded body parts and visible body parts separately: modeling all plausible poses where the occluded body parts do not penetrate the scene, and constraining the visible body parts using depth data. Specifically, the first component is realized by a neural network that estimates the candidate region named the "free zone", a region carved out of the open space within which it is safe to search for poses of the invisible body parts without concern for penetration. The second component constrains the visible body parts using the "truncated shadow volume" of the scanned body point cloud. Furthermore, we propose to use a volume matching strategy, which yields better performance than surface matching, to match the human body with the confined region. We conducted experiments on the PROX dataset, and the results demonstrate that our method produces more accurate and plausible results compared with other methods.
We introduce MVDream, a multi-view diffusion model that is able to generate consistent multi-view images from a given text prompt. Learning from both 2D and 3D data, a multi-view diffusion model can achieve the generalizability of 2D diffusion models and the consistency of 3D renderings. We demonstrate that such a multi-view prior can serve as a generalizable 3D prior that is agnostic to 3D representations. It can be applied to 3D generation via Score Distillation Sampling, significantly enhancing the consistency and stability of existing 2D-lifting methods. It can also learn new concepts from a few 2D examples, akin to DreamBooth, but for 3D generation.
Successful information propagation from source to destination in Vehicular Adhoc Network (VANET) can be hampered by the presence of neighbouring attacker nodes causing unwanted packet dropping. Potential attackers change their behaviour over time and remain undetected due to the ad-hoc nature of VANET. Capturing the dynamic attacker behaviour and updating the corresponding neighbourhood information without compromising the quality of service requirements is an ongoing challenge. This work proposes a Reinforcement Learning (RL) based neighbour selection framework for VANET with an adaptive trust management system to capture the behavioural changes of potential attackers and to dynamically update the neighbourhood information. In contrast to existing works, we consider trust and link-life time in unison as neighbour selection criteria to achieve trustworthy communication. Our adaptive trust model takes into account the social relationship, time and confidence in trust observation to avoid four types of attackers. To update the neighbourhood information, our framework sets the learning rate of the RL agent according to the velocities of the neighbour nodes to improve the model's adaptability to network topology changes. Results demonstrate that our method can take less number of hops to the destination for large network sizes while can response is up to 54 percent faster compared to a baseline method. Also, the proposed model can outperform the other baseline method by reducing the packet dropping rate up to 57 percent caused by the attacker.
We propose an end-to-end learned image data hiding framework that embeds and extracts secrets in the latent representations of a generic neural compressor. By leveraging a perceptual loss function in conjunction with our proposed message encoder and decoder, our approach simultaneously achieves high image quality and high bit accuracy. Compared to existing techniques, our framework offers superior image secrecy and competitive watermarking robustness in the compressed domain while accelerating the embedding speed by over 50 times. These results demonstrate the potential of combining data hiding techniques and neural compression and offer new insights into developing neural compression techniques and their applications.
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step $t$ and corresponding state $\hat{x}_t$, there might exist another time step $t_s$ which exhibits superior coupling with $\hat{x}_t$. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. We will release the code upon acceptance.
We propose a novel unsupervised backlit image enhancement method, abbreviated as CLIP-LIT, by exploring the potential of Contrastive Language-Image Pre-Training (CLIP) for pixel-level image enhancement. We show that the open-world CLIP prior not only aids in distinguishing between backlit and well-lit images, but also in perceiving heterogeneous regions with different luminance, facilitating the optimization of the enhancement network. Unlike high-level and image manipulation tasks, directly applying CLIP to enhancement tasks is non-trivial, owing to the difficulty in finding accurate prompts. To solve this issue, we devise a prompt learning framework that first learns an initial prompt pair by constraining the text-image similarity between the prompt (negative/positive sample) and the corresponding image (backlit image/well-lit image) in the CLIP latent space. Then, we train the enhancement network based on the text-image similarity between the enhanced result and the initial prompt pair. To further improve the accuracy of the initial prompt pair, we iteratively fine-tune the prompt learning framework to reduce the distribution gaps between the backlit images, enhanced results, and well-lit images via rank learning, boosting the enhancement performance. Our method alternates between updating the prompt learning framework and enhancement network until visually pleasing results are achieved. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability, without requiring any paired data.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.