亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recovery of 3D human mesh from monocular images has significantly been developed in recent years. However, existing models usually ignore spatial and temporal information, which might lead to mesh and image misalignment and temporal discontinuity. For this reason, we propose a novel Spatio-Temporal Alignment Fusion (STAF) model. As a video-based model, it leverages coherence clues from human motion by an attention-based Temporal Coherence Fusion Module (TCFM). As for spatial mesh-alignment evidence, we extract fine-grained local information through predicted mesh projection on the feature maps. Based on the spatial features, we further introduce a multi-stage adjacent Spatial Alignment Fusion Module (SAFM) to enhance the feature representation of the target frame. In addition to the above, we propose an Average Pooling Module (APM) to allow the model to focus on the entire input sequence rather than just the target frame. This method can remarkably improve the smoothness of recovery results from video. Extensive experiments on 3DPW, MPII3D, and H36M demonstrate the superiority of STAF. We achieve a state-of-the-art trade-off between precision and smoothness. Our code and more video results are on the project page //yw0208.github.io/staf/

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · · Networking · 門控機制 ·
2024 年 2 月 19 日

Reliable forecasting of traffic flow requires efficient modeling of traffic data. Indeed, different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture traffic networks' complex underlying spatial-temporal relations. However, given the heterogeneity of traffic data, consistently capturing both spatial and temporal dependencies presents a significant challenge. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. To this end, we propose Spatio-Temporal Lightweight Graph GRU, namely STLGRU, a novel traffic forecasting model for predicting traffic flow accurately. Specifically, our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks using memory-augmented attention and gating mechanisms in a continuously synchronized manner. Moreover, instead of employing separate temporal and spatial components, we show that our memory module and gated unit can successfully learn the spatial-temporal dependencies with reduced memory usage and fewer parameters. Extensive experimental results on three real-world public traffic datasets demonstrate that our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency. Our code is available at //github.com/Kishor-Bhaumik/STLGRU

Current approaches for 3D scene graph prediction rely on labeled datasets to train models for a fixed set of known object classes and relationship categories. We present Open3DSG, an alternative approach to learn 3D scene graph prediction in an open world without requiring labeled scene graph data. We co-embed the features from a 3D scene graph prediction backbone with the feature space of powerful open world 2D vision language foundation models. This enables us to predict 3D scene graphs from 3D point clouds in a zero-shot manner by querying object classes from an open vocabulary and predicting the inter-object relationships from a grounded LLM with scene graph features and queried object classes as context. Open3DSG is the first 3D point cloud method to predict not only explicit open-vocabulary object classes, but also open-set relationships that are not limited to a predefined label set, making it possible to express rare as well as specific objects and relationships in the predicted 3D scene graph. Our experiments show that Open3DSG is effective at predicting arbitrary object classes as well as their complex inter-object relationships describing spatial, supportive, semantic and comparative relationships.

Recent LLM-driven visual agents mainly focus on solving image-based tasks, which limits their ability to understand dynamic scenes, making it far from real-life applications like guiding students in laboratory experiments and identifying their mistakes. Considering the video modality better reflects the ever-changing nature of real-world scenarios, we devise DoraemonGPT, a comprehensive and conceptually elegant system driven by LLMs to handle dynamic video tasks. Given a video with a question/task, DoraemonGPT begins by converting the input video into a symbolic memory that stores task-related attributes. This structured representation allows for spatial-temporal querying and reasoning by well-designed sub-task tools, resulting in concise intermediate results. Recognizing that LLMs have limited internal knowledge when it comes to specialized domains (e.g., analyzing the scientific principles underlying experiments), we incorporate plug-and-play tools to assess external knowledge and address tasks across different domains. Moreover, a novel LLM-driven planner based on Monte Carlo Tree Search is introduced to explore the large planning space for scheduling various tools. The planner iteratively finds feasible solutions by backpropagating the result's reward, and multiple solutions can be summarized into an improved final answer. We extensively evaluate DoraemonGPT's effectiveness on three benchmarks and challenging in-the-wild scenarios. Code will be released at: //github.com/z-x-yang/DoraemonGPT.

Recent advancements in personalizing text-to-image (T2I) diffusion models have shown the capability to generate images based on personalized visual concepts using a limited number of user-provided examples. However, these models often struggle with maintaining high visual fidelity, particularly in manipulating scenes as defined by textual inputs. Addressing this, we introduce ComFusion, a novel approach that leverages pretrained models generating composition of a few user-provided subject images and predefined-text scenes, effectively fusing visual-subject instances with textual-specific scenes, resulting in the generation of high-fidelity instances within diverse scenes. ComFusion integrates a class-scene prior preservation regularization, which leverages composites the subject class and scene-specific knowledge from pretrained models to enhance generation fidelity. Additionally, ComFusion uses coarse generated images, ensuring they align effectively with both the instance image and scene texts. Consequently, ComFusion maintains a delicate balance between capturing the essence of the subject and maintaining scene fidelity.Extensive evaluations of ComFusion against various baselines in T2I personalization have demonstrated its qualitative and quantitative superiority.

Robots powered by 'blackbox' models need to provide human-understandable explanations which we can trust. Hence, explainability plays a critical role in trustworthy autonomous decision-making to foster transparency and acceptance among end users, especially in complex autonomous driving. Recent advancements in Multi-Modal Large Language models (MLLMs) have shown promising potential in enhancing the explainability as a driving agent by producing control predictions along with natural language explanations. However, severe data scarcity due to expensive annotation costs and significant domain gaps between different datasets makes the development of a robust and generalisable system an extremely challenging task. Moreover, the prohibitively expensive training requirements of MLLM and the unsolved problem of catastrophic forgetting further limit their generalisability post-deployment. To address these challenges, we present RAG-Driver, a novel retrieval-augmented multi-modal large language model that leverages in-context learning for high-performance, explainable, and generalisable autonomous driving. By grounding in retrieved expert demonstration, we empirically validate that RAG-Driver achieves state-of-the-art performance in producing driving action explanations, justifications, and control signal prediction. More importantly, it exhibits exceptional zero-shot generalisation capabilities to unseen environments without further training endeavours.

Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data. To better exploit the unlabeled data the latest SSL methods use pseudo-labels predicted from a single discriminative classifier. However, the generated pseudo-labels are inevitably linked to inherent confirmation bias and noise which greatly affects the model performance. In this work we introduce a new framework for SSL named NorMatch. Firstly, we introduce a new uncertainty estimation scheme based on normalizing flows, as an auxiliary classifier, to enforce highly certain pseudo-labels yielding a boost of the discriminative classifiers. Secondly, we introduce a threshold-free sample weighting strategy to exploit better both high and low confidence pseudo-labels. Furthermore, we utilize normalizing flows to model, in an unsupervised fashion, the distribution of unlabeled data. This modelling assumption can further improve the performance of generative classifiers via unlabeled data, and thus, implicitly contributing to training a better discriminative classifier. We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.

We present, PEGASUS, a method for constructing personalized generative 3D face avatars from monocular video sources. As a compositional generative model, our model enables disentangled controls to selectively alter the facial attributes (e.g., hair or nose) of the target individual, while preserving the identity. We present two key approaches to achieve this goal. First, we present a method to construct a person-specific generative 3D avatar by building a synthetic video collection of the target identity with varying facial attributes, where the videos are synthesized by borrowing parts from diverse individuals from other monocular videos. Through several experiments, we demonstrate the superior performance of our approach by generating unseen attributes with high realism. Subsequently, we introduce a zero-shot approach to achieve the same generative modeling more efficiently by leveraging a previously constructed personalized generative model.

Inpainting involves filling in missing pixels or areas in an image, a crucial technique employed in Mixed Reality environments for various applications, particularly in Diminished Reality (DR) where content is removed from a user's visual environment. Existing methods rely on digital replacement techniques which necessitate multiple cameras and incur high costs. AR devices and smartphones use ToF depth sensors to capture scene depth maps aligned with RGB images. Despite speed and affordability, ToF cameras create imperfect depth maps with missing pixels. To address the above challenges, we propose Hierarchical Inpainting GAN (HI-GAN), a novel approach comprising three GANs in a hierarchical fashion for RGBD inpainting. EdgeGAN and LabelGAN inpaint masked edge and segmentation label images respectively, while CombinedRGBD-GAN combines their latent representation outputs and performs RGB and Depth inpainting. Edge images and particularly segmentation label images as auxiliary inputs significantly enhance inpainting performance by complementary context and hierarchical optimization. We believe we make the first attempt to incorporate label images into inpainting process.Unlike previous approaches requiring multiple sequential models and separate outputs, our work operates in an end-to-end manner, training all three models simultaneously and hierarchically. Specifically, EdgeGAN and LabelGAN are first optimized separately and further optimized inside CombinedRGBD-GAN to enhance inpainting quality. Experiments demonstrate that HI-GAN works seamlessly and achieves overall superior performance compared with existing approaches.

Reconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting, that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination which explicitly inject structure priors into the initial optimization process for helping build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. Our GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, and OpenIllumination, achieving strong reconstruction results from only 4 views and significantly outperforming previous state-of-the-art methods.

The work of neural retrieval so far focuses on ranking short texts and is challenged with long documents. There are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. Wikipedia articles, research papers, etc. We propose and name this task \emph{Document-Aware Passage Retrieval} (DAPR). While analyzing the errors of the State-of-The-Art (SoTA) passage retrievers, we find the major errors (53.5\%) are due to missing document context. This drives us to build a benchmark for this task including multiple datasets from heterogeneous domains. In the experiments, we extend the SoTA passage retrievers with document context via (1) hybrid retrieval with BM25 and (2) contextualized passage representations, which inform the passage representation with document context. We find despite that hybrid retrieval performs the strongest on the mixture of the easy and the hard queries, it completely fails on the hard queries that require document-context understanding. On the other hand, contextualized passage representations (e.g. prepending document titles) achieve good improvement on these hard queries, but overall they also perform rather poorly. Our created benchmark enables future research on developing and comparing retrieval systems for the new task. The code and the data are available at //github.com/UKPLab/arxiv2023-dapr.

北京阿比特科技有限公司