The generative modeling of data on manifold is an important task, for which diffusion models in flat spaces typically need nontrivial adaptations. This article demonstrates how a technique called `trivialization' can transfer the effectiveness of diffusion models in Euclidean spaces to Lie groups. In particular, an auxiliary momentum variable was algorithmically introduced to help transport the position variable between data distribution and a fixed, easy-to-sample distribution. Normally, this would incur further difficulty for manifold data because momentum lives in a space that changes with the position. However, our trivialization technique creates to a new momentum variable that stays in a simple $\textbf{fixed vector space}$. This design, together with a manifold preserving integrator, simplifies implementation and avoids inaccuracies created by approximations such as projections to tangent space and manifold, which were typically used in prior work, hence facilitating generation with high-fidelity and efficiency. The resulting method achieves state-of-the-art performance on protein and RNA torsion angle generation and sophisticated torus datasets. We also, arguably for the first time, tackle the generation of data on high-dimensional Special Orthogonal and Unitary groups, the latter essential for quantum problems.
Modern cyber-physical systems are becoming increasingly complex to model, thus motivating data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However, most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is feasible to avoid applying the agent's infeasible action proposals to the system. However, these efforts focus on guaranteeing constraint satisfaction rather than the agent's learning efficiency. To improve the learning process, we introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model. We train the agent by formulating the problem as a distribution matching problem and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path planning scenario, and a robotic grasping simulation, we demonstrate the agent's proficiency in generating actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible to focus future work on the objective part of action mapping, paving the way for an RL framework that is both safe and efficient.
We explore methods to reduce the impact of unobserved confounders on the causal mediation analysis of high-dimensional mediators with spatially smooth structures, such as brain imaging data. The key approach is to incorporate the latent individual effects, which influence the structured mediators, as unobserved confounders in the outcome model, thereby potentially debiasing the mediation effects. We develop BAyesian Structured Mediation analysis with Unobserved confounders (BASMU) framework, and establish its model identifiability conditions. Theoretical analysis is conducted on the asymptotic bias of the Natural Indirect Effect (NIE) and the Natural Direct Effect (NDE) when the unobserved confounders are omitted in mediation analysis. For BASMU, we propose a two-stage estimation algorithm to mitigate the impact of these unobserved confounders on estimating the mediation effect. Extensive simulations demonstrate that BASMU substantially reduces the bias in various scenarios. We apply BASMU to the analysis of fMRI data in the Adolescent Brain Cognitive Development (ABCD) study, focusing on four brain regions previously reported to exhibit meaningful mediation effects. Compared with the existing image mediation analysis method, BASMU identifies two to four times more voxels that have significant mediation effects, with the NIE increased by 41%, and the NDE decreased by 26%.
Optimizing multiple objectives simultaneously is an important task in recommendation platforms to improve their performance on different fronts. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements on any objective comes at the cost of a performance decrease in another objective. Unfortunately, existing multi-objective recommender systems do not systematically consider such relationships; instead, they balance between these objectives in a static and uniform manner, resulting in performance that is significantly worse than the pareto-optimality. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture the personalized and contextual consumer preference towards each objective and update the recommendations correspondingly; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over state-of-the-art baselines in extensive offline experiments conducted on three real-world datasets. Furthermore, we conduct a large-scale online controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improves the three conflicting objectives of Click-Through Rate, Video View, and Dwell Time by 2%, 5%, and 7% respectively over the latest production system, demonstrating its tangible economic impact in industrial applications.
A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.
Being the most classical generative model for serial data, state-space models (SSM) are fundamental in AI and statistical machine learning. In SSM, any form of parameter learning or latent state inference typically involves the computation of complex latent-state posteriors. In this work, we build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference by combining particle methods and variational inference. While standard VSMC operates in the offline mode, by re-processing repeatedly a given batch of data, we distribute the approximation of the gradient of the VSMC surrogate ELBO in time using stochastic approximation, allowing for online learning in the presence of streams of data. This results in an algorithm, online VSMC, that is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation. In addition, we provide rigorous theoretical results describing the algorithm's convergence properties as the number of data tends to infinity as well as numerical illustrations of its excellent convergence properties and usefulness also in batch-processing settings.
We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.
In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.
We explore how much knowing a parametric restriction on propensity scores improves semiparametric efficiency bounds in the potential outcome framework. For stratified propensity scores, considered as a parametric model, we derive explicit formulas for the efficiency gain from knowing how the covariate space is split. Based on these, we find that the efficiency gain decreases as the partition of the stratification becomes finer. For general parametric models, where it is hard to obtain explicit representations of efficiency bounds, we propose a novel framework that enables us to see whether knowing a parametric model is valuable in terms of efficiency even when it is high-dimensional. In addition to the intuitive fact that knowing the parametric model does not help much if it is sufficiently flexible, we discover that the efficiency gain can be nearly zero even though the parametric assumption significantly restricts the space of possible propensity scores.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.