亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a time-domain combined field integral equation for electromagnetic scattering by a perfect electric conductor. The new equation is obtained by leveraging the quasi-Helmholtz projectors, which separate both the unknown and the source fields into solenoidal and irrotational components. These two components are then appropriately rescaled to cure the solution from a loss of accuracy occurring when the time step is large. Yukawa-type integral operators of a purely imaginary wave number are also used as a Calderon preconditioner to eliminate the ill-conditioning of matrix systems. The stabilized time-domain electric and magnetic field integral equations are linearly combined in a Calderon-like fashion, then temporally discretized using a proper pair of trial functions, resulting in a marching-on-in-time linear system. The novel formulation is immune to spurious resonances, dense discretization breakdown, large-time step breakdown and dc instabilities stemming from non-trivial kernels. Numerical results for both simply-connected and multiply-connected scatterers corroborate the theoretical analysis.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We introduce a predictor-corrector discretisation scheme for the numerical integration of a class of stochastic differential equations and prove that it converges with weak order 1.0. The key feature of the new scheme is that it builds up sequentially (and recursively) in the dimension of the state space of the solution, hence making it suitable for approximations of high-dimensional state space models. We show, using the stochastic Lorenz 96 system as a test model, that the proposed method can operate with larger time steps than the standard Euler-Maruyama scheme and, therefore, generate valid approximations with a smaller computational cost. We also introduce the theoretical analysis of the error incurred by the new predictor-corrector scheme when used as a building block for discrete-time Bayesian filters for continuous-time systems. Finally, we assess the performance of several ensemble Kalman filters that incorporate the proposed sequential predictor-corrector Euler scheme and the standard Euler-Maruyama method. The numerical experiments show that the filters employing the new sequential scheme can operate with larger time steps, smaller Monte Carlo ensembles and noisier systems.

This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.

This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.

This paper proposes a new boundary integral equation (BIE) methodology based on the perfectly matched layer (PML) truncation technique for solving the electromagnetic scattering problems in a multi-layered medium. Instead of using the original PML stretched fields, artificial fields which are also equivalent to the solutions in the physical region are introduced. This significantly simplifies the study of the proposed methodology to derive the PML problem. Then some PML transformed layer potentials and the associated boundary integral operators (BIOs) are defined and the corresponding jump relations are shown. Under the assumption that the fields vanish on the PML boundary, the solution representations, as well as the related BIEs and regularization of the hyper-singular operators, in terms of the current density functions on the truncated interface, are derived. Numerical experiments are presented to demonstrate the efficiency and accuracy of the method.

We investigate the global existence of a solution for the stochastic fractional nonlinear Schr\"odinger equation with radially symmetric initial data in a suitable energy space $H^{\alpha}$. Using a variational principle, we demonstrate that the stochastic fractional nonlinear Schr\"odinger equation in the Stratonovich sense forms an infinite-dimensional stochastic Hamiltonian system, with its phase flow preserving symplecticity. We develop a structure-preserving algorithm for the stochastic fractional nonlinear Schr\"odinger equation from the perspective of symplectic geometry. It is established that the stochastic midpoint scheme satisfies the corresponding symplectic law in the discrete sense. Furthermore, since the midpoint scheme is implicit, we also develop a more effective mass-preserving splitting scheme. Consequently, the convergence order of the splitting scheme is shown to be $1$. Two numerical examples are conducted to validate the efficiency of the theory.

Fourth-order accurate compact schemes for variable coefficient convection diffusion equations are considered. A sufficient condition for the stability of the fully discrete problem is derived using a difference equation based approach. The constant coefficient problems are considered as a special case, and the unconditional stability of compact schemes for such case is proved theoretically. The condition number of the amplification matrix is also analyzed, and an estimate for the same is derived. The examples are provided to support the assumption taken to assure stability.

We present new Neumann-Neumann algorithms based on a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semi-discretization, the Lagrange multiplier approach provides a coupled forward-backward optimality system, which can be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, nine variants can be found for the Neumann-Neumann algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.

This manuscript examines the problem of nonlinear stochastic fractional neutral integro-differential equations with weakly singular kernels. Our focus is on obtaining precise estimates to cover all possible cases of Abel-type singular kernels. Initially, we establish the existence, uniqueness, and continuous dependence on the initial value of the true solution, assuming a local Lipschitz condition and linear growth condition. Additionally, we develop the Euler-Maruyama method for the numerical solution of the equation and prove its strong convergence under the same conditions as the well-posedness. Moreover, we determine the accurate convergence rate of this method under global Lipschitz conditions and linear growth conditions. And also we have proven generalized Gronwall inequality with a multi-weakly singularity.

It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.

We study the problem of parameter estimation for large exchangeable interacting particle systems when a sample of discrete observations from a single particle is known. We propose a novel method based on martingale estimating functions constructed by employing the eigenvalues and eigenfunctions of the generator of the mean field limit, where the law of the process is replaced by the (unique) invariant measure of the mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptotically normal when the number of observations and the number of particles tend to infinity, and we provide a rate of convergence towards the exact value of the parameters. Finally, we present several numerical experiments which show the accuracy of our estimator and corroborate our theoretical findings, even in the case the mean field dynamics exhibit more than one steady states.

北京阿比特科技有限公司