亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of network regression, where one is interested in how the topology of a network changes as a function of Euclidean covariates. We build upon recent developments in generalized regression models on metric spaces based on Fr\'echet means and propose a network regression method using the Wasserstein metric. We show that when representing graphs as multivariate Gaussian distributions, the network regression problem requires the computation of a Riemannian center of mass (i.e., Fr\'echet means). Fr\'echet means with non-negative weights translates into a barycenter problem and can be efficiently computed using fixed point iterations. Although the convergence guarantees of fixed-point iterations for the computation of Wasserstein affine averages remain an open problem, we provide evidence of convergence in a large number of synthetic and real-data scenarios. Extensive numerical results show that the proposed approach improves existing procedures by accurately accounting for graph size, topology, and sparsity in synthetic experiments. Additionally, real-world experiments using the proposed approach result in higher Coefficient of Determination ($R^{2}$) values and lower mean squared prediction error (MSPE), cementing improved prediction capabilities in practice.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We show that the physics-informed neural networks (PINNs), in combination with some recently developed discontinuity capturing neural networks, can be applied to solve optimal control problems subject to partial differential equations (PDEs) with interfaces and some control constraints. The resulting algorithm is mesh-free and scalable to different PDEs, and it ensures the control constraints rigorously. Since the boundary and interface conditions, as well as the PDEs, are all treated as soft constraints by lumping them into a weighted loss function, it is necessary to learn them simultaneously and there is no guarantee that the boundary and interface conditions can be satisfied exactly. This immediately causes difficulties in tuning the weights in the corresponding loss function and training the neural networks. To tackle these difficulties and guarantee the numerical accuracy, we propose to impose the boundary and interface conditions as hard constraints in PINNs by developing a novel neural network architecture. The resulting hard-constraint PINNs approach guarantees that both the boundary and interface conditions can be satisfied exactly or with a high degree of accuracy, and they are decoupled from the learning of the PDEs. Its efficiency is promisingly validated by some elliptic and parabolic interface optimal control problems.

Majority Illusion is a phenomenon in social networks wherein the decision by the majority of the network is not the same as one's personal social circle's majority, leading to an incorrect perception of the majority in a large network. In this paper, we present polynomial-time algorithms which can eliminate majority illusion in a network by altering as few connections as possible. Additionally, we prove that the more general problem of ensuring all neighbourhoods in the network are at least a $p$-fraction of the majority is NP-hard for most values of $p$.

Graph neural networks (GNN) are vulnerable to adversarial attacks, which aim to degrade the performance of GNNs through imperceptible changes on the graph. However, we find that in fact the prevalent meta-gradient-based attacks, which utilizes the gradient of the loss w.r.t the adjacency matrix, are biased towards training nodes. That is, their meta-gradient is determined by a training procedure of the surrogate model, which is solely trained on the training nodes. This bias manifests as an uneven perturbation, connecting two nodes when at least one of them is a labeled node, i.e., training node, while it is unlikely to connect two unlabeled nodes. However, these biased attack approaches are sub-optimal as they do not consider flipping edges between two unlabeled nodes at all. This means that they miss the potential attacked edges between unlabeled nodes that significantly alter the representation of a node. In this paper, we investigate the meta-gradients to uncover the root cause of the uneven perturbations of existing attacks. Based on our analysis, we propose a Meta-gradient-based attack method using contrastive surrogate objective (Metacon), which alleviates the bias in meta-gradient using a new surrogate loss. We conduct extensive experiments to show that Metacon outperforms existing meta gradient-based attack methods through benchmark datasets, while showing that alleviating the bias towards training nodes is effective in attacking the graph structure.

We propose a globally optimal Bayesian network structure discovery algorithm based on a progressively leveled scoring approach. Bayesian network structure discovery is a fundamental yet NP-hard problem in the field of probabilistic graphical models, and as the number of variables increases, memory usage grows exponentially. The simple and effective method proposed by Silander and Myllym\"aki has been widely applied in this field, as it incrementally calculates local scores to achieve global optimality. However, existing methods that utilize disk storage, while capable of handling networks with a larger number of variables, introduce issues such as latency, fragmentation, and additional overhead associated with disk I/O operations. To avoid these problems, we explore how to further enhance computational efficiency and reduce peak memory usage using only memory. We introduce an efficient hierarchical computation method that requires only a single traversal of all local structures, retaining only the data and information necessary for the current computation, thereby improving efficiency and significantly reducing memory requirements. Experimental results indicate that our method, when using only memory, not only reduces peak memory usage but also improves computational efficiency compared to existing methods, demonstrating good scalability for handling larger networks and exhibiting stable experimental results. Ultimately, we successfully achieved the processing of a Bayesian network with 28 variables using only memory.

Temporal networks are effective in capturing the evolving interactions of networks over time, such as social networks and e-commerce networks. In recent years, researchers have primarily concentrated on developing specific model architectures for Temporal Graph Neural Networks (TGNNs) in order to improve the representation quality of temporal nodes and edges. However, limited attention has been given to the quality of negative samples during the training of TGNNs. When compared with static networks, temporal networks present two specific challenges for negative sampling: positive sparsity and positive shift. Positive sparsity refers to the presence of a single positive sample amidst numerous negative samples at each timestamp, while positive shift relates to the variations in positive samples across different timestamps. To robustly address these challenges in training TGNNs, we introduce Curriculum Negative Mining (CurNM), a model-aware curriculum learning framework that adaptively adjusts the difficulty of negative samples. Within this framework, we first establish a dynamically updated negative pool that balances random, historical, and hard negatives to address the challenges posed by positive sparsity. Secondly, we implement a temporal-aware negative selection module that focuses on learning from the disentangled factors of recently active edges, thus accurately capturing shifting preferences. Extensive experiments on 12 datasets and 3 TGNNs demonstrate that our method outperforms baseline methods by a significant margin. Additionally, thorough ablation studies and parameter sensitivity experiments verify the usefulness and robustness of our approach. Our code is available at //github.com/zziyue83/CurNM.

The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Tou23a] developed a non-clairvoyant framework that provided an $O(\sqrt{n \log n})$ upper bound for a wide class of generalized JRP, where $n$ is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed \textit{disjoint}. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight $O(\sqrt{n})$-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou's algorithm is $\Omega(\sqrt{n \log n})$-competitive for both of these problems.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司