We consider gradient coding in the presence of an adversary, controlling so-called malicious workers trying to corrupt the computations. Previous works propose the use of MDS codes to treat the inputs of the malicious workers as errors and correct them using the error-correction properties of the code. This comes at the expense of increasing the replication, i.e., the number of workers each partial gradient is computed by. In this work, we reduce replication by proposing a method that detects the erroneous inputs from the malicious workers, hence transforming them into erasures. For $s$ malicious workers, our solution can reduce the replication to $s+1$ instead of $2s+1$ for each partial gradient at the expense of only $s$ additional computations at the main node and additional rounds of light communication between the main node and the workers. We give fundamental limits of the general framework for fractional repetition data allocation. Our scheme is optimal in terms of replication and local computation but incurs a communication cost that is asymptotically, in the size of the dataset, a multiplicative factor away from the derived bound.
Federated learning (FL) enables multiple clients to collaboratively train models without sharing their local data, and becomes an important privacy-preserving machine learning framework. However, classical FL faces serious security and robustness problem, e.g., malicious clients can poison model updates and at the same time claim large quantities to amplify the impact of their model updates in the model aggregation. Existing defense methods for FL, while all handling malicious model updates, either treat all quantities benign or simply ignore/truncate the quantities of all clients. The former is vulnerable to quantity-enhanced attack, while the latter leads to sub-optimal performance since the local data on different clients is usually in significantly different sizes. In this paper, we propose a robust quantity-aware aggregation algorithm for federated learning, called FedRA, to perform the aggregation with awareness of local data quantities while being able to defend against quantity-enhanced attacks. More specifically, we propose a method to filter malicious clients by jointly considering the uploaded model updates and data quantities from different clients, and performing quantity-aware weighted averaging on model updates from remaining clients. Moreover, as the number of malicious clients participating in the federated learning may dynamically change in different rounds, we also propose a malicious client number estimator to predict how many suspicious clients should be filtered in each round. Experiments on four public datasets demonstrate the effectiveness of our FedRA method in defending FL against quantity-enhanced attacks.
We consider best arm identification in the multi-armed bandit problem. Assuming certain continuity conditions of the prior, we characterize the rate of the Bayesian simple regret. Differing from Bayesian regret minimization (Lai, 1987), the leading term in the Bayesian simple regret derives from the region where the gap between optimal and suboptimal arms is smaller than $\sqrt{\frac{\log T}{T}}$. We propose a simple and easy-to-compute algorithm with its leading term matching with the lower bound up to a constant factor; simulation results support our theoretical findings.
We study the open question of how players learn to play a social optimum pure-strategy Nash equilibrium (PSNE) through repeated interactions in general-sum coordination games. A social optimum of a game is the stable Pareto-optimal state that provides a maximum return in the sum of all players' payoffs (social welfare) and always exists. We consider finite repeated games where each player only has access to its own utility (or payoff) function but is able to exchange information with other players. We develop a novel regret matching (RM) based algorithm for computing an efficient PSNE solution that could approach a desired Pareto-optimal outcome yielding the highest social welfare among all the attainable equilibria in the long run. Our proposed learning procedure follows the regret minimization framework but extends it in three major ways: (1) agents use global, instead of local, utility for calculating regrets, (2) each agent maintains a small and diminishing exploration probability in order to explore various PSNEs, and (3) agents stay with the actions that achieve the best global utility thus far, regardless of regrets. We prove that these three extensions enable the algorithm to select the stable social optimum equilibrium instead of converging to an arbitrary or cyclic equilibrium as in the conventional RM approach. We demonstrate the effectiveness of our approach through a set of applications in multi-agent distributed control, including a large-scale resource allocation game and a hard combinatorial task assignment problem for which no efficient (polynomial) solution exists.
We consider best arm identification in the multi-armed bandit problem. Assuming certain continuity conditions of the prior, we characterize the rate of the Bayesian simple regret. Differing from Bayesian regret minimization (Lai, 1987), the leading term in the Bayesian simple regret derives from the region where the gap between optimal and suboptimal arms is smaller than $\sqrt{\frac{\log T}{T}}$. We propose a simple and easy-to-compute algorithm with its leading term matching with the lower bound up to a constant factor; simulation results support our theoretical findings.
The aim of this paper is to develop estimation and inference methods for the drift parameters of multivariate L\'evy-driven continuous-time autoregressive processes of order $p\in\mathbb{N}$. Starting from a continuous-time observation of the process, we develop consistent and asymptotically normal maximum likelihood estimators. We then relax the unrealistic assumption of continuous-time observation by considering natural discretizations based on a combination of Riemann-sum, finite difference, and thresholding approximations. The resulting estimators are also proven to be consistent and asymptotically normal under a general set of conditions, allowing for both finite and infinite jump activity in the driving L\'evy process. When discretizing the estimators, allowing for irregularly spaced observations is of great practical importance. In this respect, CAR($p$) models are not just relevant for "true" continuous-time processes: a CAR($p$) specification provides a natural continuous-time interpolation for modeling irregularly spaced data - even if the observed process is inherently discrete. As a practically relevant application, we consider the setting where the multivariate observation is known to possess a graphical structure. We refer to such a process as GrCAR and discuss the corresponding drift estimators and their properties. The finite sample behavior of all theoretical asymptotic results is empirically assessed by extensive simulation experiments.
Indian Judiciary is suffering from burden of millions of cases that are lying pending in its courts at all the levels. The High Court National Judicial Data Grid (HC-NJDG) indexes all the cases pending in the high courts and publishes the data publicly. In this paper, we analyze the data that we have collected from the HC-NJDG portal on 229 randomly chosen days between August 31, 2017 to March 22, 2020, including these dates. Thus, the data analyzed in the paper spans a period of more than two and a half years. We show that: 1) the pending cases in most of the high courts is increasing linearly with time. 2) the case load on judges in various high courts is very unevenly distributed, making judges of some high courts hundred times more loaded than others. 3) for some high courts it may take even a hundred years to clear the pendency cases if proper measures are not taken. We also suggest some policy changes that may help clear the pendency within a fixed time of either five or fifteen years. Finally, we find that the rate of institution of cases in high courts can be easily handled by the current sanctioned strength. However, extra judges are needed only to clear earlier backlogs.
The Graphical House Allocation (GHA) problem asks: how can $n$ houses (each with a fixed non-negative value) be assigned to the vertices of an undirected graph $G$, so as to minimize the sum of absolute differences along the edges of $G$? This problem generalizes the classical Minimum Linear Arrangement problem, as well as the well-known House Allocation Problem from Economics. Recent work has studied the computational aspects of GHA and observed that the problem is NP-hard and inapproximable even on particularly simple classes of graphs, such as vertex disjoint unions of paths. However, the dependence of any approximations on the structural properties of the underlying graph had not been studied. In this work, we give a nearly complete characterization of the approximability of GHA. We present algorithms to approximate the optimal envy on general graphs, trees, planar graphs, bounded-degree graphs, and bounded-degree planar graphs. For each of these graph classes, we then prove matching lower bounds, showing that in each case, no significant improvement can be attained unless P = NP. We also present general approximation ratios as a function of structural parameters of the underlying graph, such as treewidth; these match the tight upper bounds in general, and are significantly better approximations for many natural subclasses of graphs. Finally, we investigate the special case of bounded-degree trees in some detail. We first refute a conjecture by Hosseini et al. [2023] about the structural properties of exact optimal allocations on binary trees by means of a counterexample on a depth-$3$ complete binary tree. This refutation, together with our hardness results on trees, might suggest that approximating the optimal envy even on complete binary trees is infeasible. Nevertheless, we present a linear-time algorithm that attains a $3$-approximation on complete binary trees.
Existing molecular communication systems, both theoretical and experimental, are characterized by low information rates. In this paper, inspired by time-of-flight mass spectrometry (TOFMS), we consider the design of a molecular communication system in which the channel is a vacuum and demonstrate that this method has the potential to increase achievable information rates by many orders of magnitude. We use modelling results from TOFMS to obtain arrival time distributions for accelerated ions and use them to analyze several species of ions, including hydrogen, nitrogen, argon, and benzene. We show that the achievable information rates can be increased using a velocity (Wien) filter, which reduces uncertainty in the velocity of the ions. Using a simplified communication model, we show that data rates well above 1 Gbit/s/molecule are achievable.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.