Vision-based Interfaces (VIs) are pivotal in advancing Human-Computer Interaction (HCI), particularly in enhancing context awareness. However, there are significant opportunities for these interfaces due to rapid advancements in multimodal Artificial Intelligence (AI), which promise a future of tight coupling between humans and intelligent systems. AI-driven VIs, when integrated with other modalities, offer a robust solution for effectively capturing and interpreting user intentions and complex environmental information, thereby facilitating seamless and efficient interactions. This PhD study explores three application cases of multimodal interfaces to augment context awareness, respectively focusing on three dimensions of visual modality: scale, depth, and time: a fine-grained analysis of physical surfaces via microscopic image, precise projection of the real world using depth data, and rendering haptic feedback from video background in virtual environments.
Despite being widely applied due to their exceptional capabilities, Large Language Models (LLMs) have been proven to be vulnerable to backdoor attacks. These attacks introduce targeted vulnerabilities into LLMs by poisoning training samples and full-parameter fine-tuning. However, this kind of backdoor attack is limited since they require significant computational resources, especially as the size of LLMs increases. Besides, parameter-efficient fine-tuning (PEFT) offers an alternative but the restricted parameter updating may impede the alignment of triggers with target labels. In this study, we first verify that backdoor attacks with PEFT may encounter challenges in achieving feasible performance. To address these issues and improve the effectiveness of backdoor attacks with PEFT, we propose a novel backdoor attack algorithm from weak to strong based on feature alignment-enhanced knowledge distillation (W2SAttack). Specifically, we poison small-scale language models through full-parameter fine-tuning to serve as the teacher model. The teacher model then covertly transfers the backdoor to the large-scale student model through feature alignment-enhanced knowledge distillation, which employs PEFT. Theoretical analysis reveals that W2SAttack has the potential to augment the effectiveness of backdoor attacks. We demonstrate the superior performance of W2SAttack on classification tasks across four language models, four backdoor attack algorithms, and two different architectures of teacher models. Experimental results indicate success rates close to 100% for backdoor attacks targeting PEFT.
Robust partially observable Markov decision processes (robust POMDPs) extend classical POMDPs to handle additional uncertainty on the transition and observation probabilities via so-called uncertainty sets. Policies for robust POMDPs must not only be memory-based to account for partial observability but also robust against model uncertainty to account for the worst-case instances from the uncertainty sets. We propose the pessimistic iterative planning (PIP) framework, which finds robust memory-based policies for robust POMDPs. PIP alternates between two main steps: (1) selecting an adversarial (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this adversarial POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next adversarial POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network by using supervision policies optimized for the adversarial POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against several baseline methods and competitive performance compared to a state-of-the-art robust POMDP solver.
A hybrid autoregressive transducer (HAT) is a variant of neural transducer that models blank and non-blank posterior distributions separately. In this paper, we propose a novel internal acoustic model (IAM) training strategy to enhance HAT-based speech recognition. IAM consists of encoder and joint networks, which are fully shared and jointly trained with HAT. This joint training not only enhances the HAT training efficiency but also encourages IAM and HAT to emit blanks synchronously which skips the more expensive non-blank computation, resulting in more effective blank thresholding for faster decoding. Experiments demonstrate that the relative error reductions of the HAT with IAM compared to the vanilla HAT are statistically significant. Moreover, we introduce dual blank thresholding, which combines both HAT- and IAM-blank thresholding and a compatible decoding algorithm. This results in a 42-75% decoding speed-up with no major performance degradation.
Aspect-based Sentiment Analysis (ABSA) is an important sentiment analysis task, which aims to determine the sentiment polarity towards an aspect in a sentence. Due to the expensive and limited labeled data, data generation (DG) has become the standard for improving the performance of ABSA. However, current DG methods usually have some shortcomings: 1) poor fluency and coherence, 2) lack of diversity of generated data, and 3) reliance on some existing labeled data, hindering its applications in real-world scenarios. With the advancement of large language models (LLMs), LLM-based DG has the potential to solve the above issues. Unfortunately, directly prompting LLMs struggles to generate the desired pseudo-label ABSA data, as LLMs are prone to hallucinations, leading to undesired data generation. To this end, we propose a systematic Iterative Data Generation framework, namely IDG, to boost the performance of ABSA. The core of IDG is to make full use of the powerful abilities (i.e., instruction-following, in-context learning and self-reflection) of LLMs to iteratively generate more fluent and diverse pseudo-label data, starting from an unsupervised sentence corpus. Specifically, IDG designs a novel iterative data generation mechanism and a self-reflection data filtering module to tackle the challenges of unexpected data generation caused by hallucinations. Extensive experiments on four widely-used ABSA benchmarks show that IDG brings consistent and significant performance gains among five baseline ABSA models. More encouragingly, the synthetic data generated by IDG can achieve comparable or even better performance against the manually annotated data.
Recent advancements in integrating Large Language Models (LLM) with automatic speech recognition (ASR) have performed remarkably in general domains. While supervised fine-tuning (SFT) of all model parameters is often employed to adapt pre-trained LLM-based ASR models to specific domains, it imposes high computational costs and notably reduces their performance in general domains. In this paper, we propose a novel parameter-efficient multi-domain fine-tuning method for adapting pre-trained LLM-based ASR models to multi-accent domains without catastrophic forgetting named \textit{HDMoLE}, which leverages hierarchical routing and dynamic thresholds based on combining low-rank adaptation (LoRA) with the mixer of experts (MoE) and can be generalized to any linear layer. Hierarchical routing establishes a clear correspondence between LoRA experts and accent domains, improving cross-domain collaboration among the LoRA experts. Unlike the static Top-K strategy for activating LoRA experts, dynamic thresholds can adaptively activate varying numbers of LoRA experts at each MoE layer. Experiments on the multi-accent and standard Mandarin datasets demonstrate the efficacy of HDMoLE. Applying HDMoLE to an LLM-based ASR model projector module achieves similar performance to full fine-tuning in the target multi-accent domains while using only 9.6% of the trainable parameters required for full fine-tuning and minimal degradation in the source general domain.
We propose a new accelerated first-order method for convex optimization under non-Euclidean smoothness assumptions. In contrast to standard acceleration techniques, our approach uses primal-dual iterate sequences taken with respect to differing norms, which are then coupled using an implicitly determined interpolation parameter. For $\ell_p$ norm smooth problems in $d$ dimensions, our method provides an iteration complexity improvement of up to $O(d^{1-\frac{2}{p}})$ in terms of calls to a first-order oracle, thereby allowing us to circumvent long-standing barriers in accelerated non-Euclidean steepest descent.
We show that the Rademacher complexity-based approach can generate non-vacuous generalisation bounds on Convolutional Neural Networks (CNNs) for classifying a small number of classes of images. The development of new Talagrand's contraction lemmas for high-dimensional mappings between function spaces and CNNs for general Lipschitz activation functions is a key technical contribution. Our results show that the Rademacher complexity does not depend on the network length for CNNs with some special types of activation functions such as ReLU, Leaky ReLU, Parametric Rectifier Linear Unit, Sigmoid, and Tanh.
Large Language Models (LLMs) demonstrate robust capabilities across various fields, leading to a paradigm shift in LLM-enhanced Recommender System (RS). Research to date focuses on point-wise and pair-wise recommendation paradigms, which are inefficient for LLM-based recommenders due to high computational costs. However, existing list-wise approaches also fall short in ranking tasks due to misalignment between ranking objectives and next-token prediction. Moreover, these LLM-based methods struggle to effectively address the order relation among candidates, particularly given the scale of ratings. To address these challenges, this paper introduces the large language model framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks. Specifically, ALRO employs explicit feedback in a listwise manner by introducing soft lambda loss, a customized adaptation of lambda loss designed for optimizing order relations. This mechanism provides more accurate optimization goals, enhancing the ranking process. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms both existing embedding-based recommendation methods and LLM-based recommendation baselines.
Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.