A system of two coupled nonlinear parabolic partial differential equations with two opposite directions of time is considered. In fact, this is the so-called "Mean Field Games System" (MFGS), which is derived in the mean field games (MFG) theory. This theory has numerous applications in social sciences. The topic of Coefficient Inverse Problems (CIPs) in the MFG theory is in its infant age, both in theory and computations. A numerical method for this CIP is developed. Convergence analysis ensures the global convergence of this method. Numerical experiments are presented.
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions, such as arbitrary unimodal, symmetric distributions and discrete groups. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries, and demonstrate practical applications such as the detection of out-of-distribution symmetries. Our code is publicly available at //github.com/aurban0/ssl-sym.
A surrogate model approximates the outputs of a solver of Partial Differential Equations (PDEs) with a low computational cost. In this article, we propose a method to build learning-based surrogates in the context of parameterized PDEs, which are PDEs that depend on a set of parameters but are also temporal and spatial processes. Our contribution is a method hybridizing the Proper Orthogonal Decomposition and several Support Vector Regression machines. This method is conceived to work in real-time, thus aimed for being used in the context of digital twins, where a user can perform an interactive analysis of results based on the proposed surrogate. We present promising results on two use cases concerning electrical machines. These use cases are not toy examples but are produced an industrial computational code, they use meshes representing non-trivial geometries and contain non-linearities.
Randomized subspace approximation with "matrix sketching" is an effective approach for constructing approximate partial singular value decompositions (SVDs) of large matrices. The performance of such techniques has been extensively analyzed, and very precise estimates on the distribution of the residual errors have been derived. However, our understanding of the accuracy of the computed singular vectors (measured in terms of the canonical angles between the spaces spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In this work, we present practical bounds and estimates for canonical angles of randomized subspace approximation that can be computed efficiently either a priori or a posteriori, without assuming prior knowledge of the true singular subspaces. Under moderate oversampling in the randomized SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while bringing a clear insight into the balance between oversampling and power iterations given a fixed budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the empirical effectiveness of these canonical angle bounds and estimates on different matrices under various algorithmic choices for the randomized SVD.
Recurrence equations have played a central role in static cost analysis, where they can be viewed as abstractions of programs and used to infer resource usage information without actually running the programs with concrete data. Such information is typically represented as functions of input data sizes. More generally, recurrence equations have been increasingly used to automatically obtain non-linear numerical invariants. However, state-of-the-art recurrence solvers and cost analysers suffer from serious limitations when dealing with the (complex) features of recurrences arising from cost analyses. We address this challenge by developing a novel order-theoretical framework where recurrences are viewed as operators and their solutions as fixpoints, which allows leveraging powerful pre/postfixpoint search techniques. We prove useful properties and provide principles and insights that enable us to develop techniques and combine them to design new solvers. We have also implemented and experimentally evaluated an optimisation-based instantiation of the proposed approach. The results are quite promising: our prototype outperforms state-of-the-art cost analysers and recurrence solvers, and can infer tight non-linear lower/upper bounds, in a reasonable time, for complex recurrences representing diverse program behaviours.
Investigating solutions of nonlinear equation systems is challenging in a general framework, especially if the equations contain uncertainties about parameters modeled by probability densities. Such random equations, understood as stationary (non-dynamical) equations with parameters as random variables, have a long history and a broad range of applications. In this work, we study nonlinear random equations by combining them with mixture model parameter random variables in order to investigate the combinatorial complexity of such equations and how this can be utilized practically. We derive a general likelihood function and posterior density of approximate best fit solutions while avoiding significant restrictions about the type of nonlinearity or mixture models, and demonstrate their numerically efficient application for the applied researcher. In the results section we are specifically focusing on example simulations of approximate likelihood/posterior solutions for random linear equation systems, nonlinear systems of random conic section equations, as well as applications to portfolio optimization, stochastic control and random matrix theory in order to show the wide applicability of the presented methodology.
We propose an efficient offline pointing calibration method for operational antenna systems which does not require any downtime. Our approach minimizes the calibration effort and exploits technical signal information which is typically used for monitoring and control purposes in ground station operations. Using a standard antenna interface and data from an operational satellite contact, we come up with a robust strategy for training data set generation. On top of this, we learn the parameters of a suitable coordinate transform by means of linear regression. In our experiments, we show the usefulness of the method in a real-world setup.
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant $n$-body particle systems. We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5\times$ faster, which allows it to be the first method to train using energy on the challenging $55$-particle Lennard-Jones system.
Generally, discretization of partial differential equations (PDEs) creates a sequence of linear systems $A_k x_k = b_k, k = 0, 1, 2, ..., N$ with well-known and structured sparsity patterns. Preconditioners are often necessary to achieve fast convergence When solving these linear systems using iterative solvers. We can use preconditioner updates for closely related systems instead of computing a preconditioner for each system from scratch. One such preconditioner update is the sparse approximate map (SAM), which is based on the sparse approximate inverse preconditioner using a least squares approximation. A SAM then acts as a map from one matrix in the sequence to another nearby one for which we have an effective preconditioner. To efficiently compute an effective SAM update (i.e., one that facilitates fast convergence of the iterative solver), we seek to compute an optimal sparsity pattern. In this paper, we examine several sparsity patterns for computing the SAM update to characterize optimal or near-optimal sparsity patterns for linear systems arising from discretized PDEs.
Robust estimation of the essential matrix, which encodes the relative position and orientation of two cameras, is a fundamental step in structure from motion pipelines. Recent deep-based methods achieved accurate estimation by using complex network architectures that involve graphs, attention layers, and hard pruning steps. Here, we propose a simpler network architecture based on Deep Sets. Given a collection of point matches extracted from two images, our method identifies outlier point matches and models the displacement noise in inlier matches. A weighted DLT module uses these predictions to regress the essential matrix. Our network achieves accurate recovery that is superior to existing networks with significantly more complex architectures.
Graph matrices are a type of matrix which has played a crucial role in analyzing the sum of squares hierarchy on average case problems. However, except for rough norm bounds, little is known about graph matrices. In this paper, we take a step towards better understanding graph matrices by determining the limiting distribution of the spectrum of the singular values of Z-shaped graph matrices. We then give a partial generalization of our results for $m$-layer Z-shaped graph matrices.