Federated learning (FL) is an important paradigm for training global models from decentralized data in a privacy-preserving way. Existing FL methods usually assume the global model can be trained on any participating client. However, in real applications, the devices of clients are usually heterogeneous, and have different computing power. Although big models like BERT have achieved huge success in AI, it is difficult to apply them to heterogeneous FL with weak clients. The straightforward solutions like removing the weak clients or using a small model to fit all clients will lead to some problems, such as under-representation of dropped clients and inferior accuracy due to data loss or limited model representation ability. In this work, we propose InclusiveFL, a client-inclusive federated learning method to handle this problem. The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities, bigger models for powerful clients and smaller ones for weak clients. We also propose an effective method to share the knowledge among multiple local models with different sizes. In this way, all the clients can participate in the model learning in FL, and the final model can be big and powerful enough. Besides, we propose a momentum knowledge distillation method to better transfer knowledge in big models on powerful clients to the small models on weak clients. Extensive experiments on many real-world benchmark datasets demonstrate the effectiveness of the proposed method in learning accurate models from clients with heterogeneous devices under the FL framework.
In this perspective paper we study the effect of non independent and identically distributed (non-IID) data on federated online learning to rank (FOLTR) and chart directions for future work in this new and largely unexplored research area of Information Retrieval. In the FOLTR process, clients join a federation to jointly create an effective ranker from the implicit click signal originating in each client, without the need to share data (documents, queries, clicks). A well-known factor that affects the performance of federated learning systems, and that poses serious challenges to these approaches, is the fact that there may be some type of bias in the way the data is distributed across clients. While FOLTR systems are on their own rights a type of federated learning system, the presence and effect of non-IID data in FOLTR has not been studied. To this aim, we first enumerate possible data distribution settings that may showcase data bias across clients and thus give rise to the non-IID problem. Then, we study the impact of each of these settings on the performance of the current state-of-the-art FOLTR approach, the Federated Pairwise Differentiable Gradient Descent (FPDGD), and we highlight which data distributions may pose a problem for FOLTR methods. We also explore how common approaches proposed in the federated learning literature address non-IID issues in FOLTR. This allows us to unveil new research gaps that, we argue, future research in FOLTR should consider. This is an important contribution to the current state of the field of FOLTR because, for FOLTR systems to be deployed, the factors affecting their performance, including the impact of non-IID data, need to thoroughly be understood.
As machine learning algorithms become increasingly integrated in crucial decision-making scenarios, such as healthcare, recruitment, and risk assessment, there have been increasing concerns about the privacy and fairness of such systems. Federated learning has been viewed as a promising solution for collaboratively training of machine learning models among multiple parties while maintaining the privacy of their local data. However, federated learning also poses new challenges in mitigating the potential bias against certain populations (e.g., demographic groups), as this typically requires centralized access to the sensitive information (e.g., race, gender) of each data point. Motivated by the importance and challenges of group fairness in federated learning, in this work, we propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method, which aims to provide fair model performance across different sensitive groups (e.g., racial, gender groups) while maintaining high utility. This formulation can further provide more flexibility in the customized local debiasing strategies for each client. We build our FairFed algorithm around the secure aggregation protocol of federated learning. When running federated training on widely investigated fairness datasets, we demonstrate that our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution. We also investigate the performance of FairFed on naturally distributed real-life data collected from different geographical locations or departments within an organization.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients' training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. A larger inter-client variation implies more personalization is needed. Correspondingly, our method uses uncertainty-driven local training steps and aggregation rule instead of conventional local fine-tuning and sample size-based aggregation. With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance compared with the existing counterparts.
Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.
Recently, federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data. Nevertheless, directly applying federated learning to real-world tasks faces two challenges: (1) heterogeneity in the data among different organizations; and (2) data noises inside individual organizations. In this paper, we propose a general framework to solve the above two challenges simultaneously. Specifically, we propose using distributionally robust optimization to mitigate the negative effects caused by data heterogeneity paradigm to sample clients based on a learnable distribution at each iteration. Additionally, we observe that this optimization paradigm is easily affected by data noises inside local clients, which has a significant performance degradation in terms of global model prediction accuracy. To solve this problem, we propose to incorporate mixup techniques into the local training process of federated learning. We further provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability. Furthermore, we conduct empirical studies across different drug discovery tasks, such as ADMET property prediction and drug-target affinity prediction.
We propose a novel federated learning paradigm to model data variability among heterogeneous clients in multi-centric studies. Our method is expressed through a hierarchical Bayesian latent variable model, where client-specific parameters are assumed to be realization from a global distribution at the master level, which is in turn estimated to account for data bias and variability across clients. We show that our framework can be effectively optimized through expectation maximization (EM) over latent master's distribution and clients' parameters. We also introduce formal differential privacy (DP) guarantees compatibly with our EM optimization scheme. We tested our method on the analysis of multi-modal medical imaging data and clinical scores from distributed clinical datasets of patients affected by Alzheimer's disease. We demonstrate that our method is robust when data is distributed either in iid and non-iid manners, even when local parameters perturbation is included to provide DP guarantees. Moreover, the variability of data, views and centers can be quantified in an interpretable manner, while guaranteeing high-quality data reconstruction as compared to state-of-the-art autoencoding models and federated learning schemes. The code is available at //gitlab.inria.fr/epione/federated-multi-views-ppca.
Federated learning with differential privacy, or private federated learning, provides a strategy to train machine learning models while respecting users' privacy. However, differential privacy can disproportionately degrade the performance of the models on under-represented groups, as these parts of the distribution are difficult to learn in the presence of noise. Existing approaches for enforcing fairness in machine learning models have considered the centralized setting, in which the algorithm has access to the users' data. This paper introduces an algorithm to enforce group fairness in private federated learning, where users' data does not leave their devices. First, the paper extends the modified method of differential multipliers to empirical risk minimization with fairness constraints, thus providing an algorithm to enforce fairness in the central setting. Then, this algorithm is extended to the private federated learning setting. The proposed algorithm, \texttt{FPFL}, is tested on a federated version of the Adult dataset and an "unfair" version of the FEMNIST dataset. The experiments on these datasets show how private federated learning accentuates unfairness in the trained models, and how FPFL is able to mitigate such unfairness.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.