亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new general-purpose algorithm for learning classes of $[0,1]$-valued functions in a generalization of the prediction model, and prove a general upper bound on the expected absolute error of this algorithm in terms of a scale-sensitive generalization of the Vapnik dimension proposed by Alon, Ben-David, Cesa-Bianchi and Haussler. We give lower bounds implying that our upper bounds cannot be improved by more than a constant factor in general. We apply this result, together with techniques due to Haussler and to Benedek and Itai, to obtain new upper bounds on packing numbers in terms of this scale-sensitive notion of dimension. Using a different technique, we obtain new bounds on packing numbers in terms of Kearns and Schapire's fat-shattering function. We show how to apply both packing bounds to obtain improved general bounds on the sample complexity of agnostic learning. For each $\epsilon > 0$, we establish weaker sufficient and stronger necessary conditions for a class of $[0,1]$-valued functions to be agnostically learnable to within $\epsilon$, and to be an $\epsilon$-uniform Glivenko-Cantelli class. This is a manuscript that was accepted by JCSS, together with a correction.

相關內容

The Fokker-Planck equation describes the evolution of the probability density associated with a stochastic differential equation. As the dimension of the system grows, solving this partial differential equation (PDE) using conventional numerical methods becomes computationally prohibitive. Here, we introduce a fast, scalable, and interpretable method for solving the Fokker-Planck equation which is applicable in higher dimensions. This method approximates the solution as a linear combination of shape-morphing Gaussians with time-dependent means and covariances. These parameters evolve according to the method of reduced-order nonlinear solutions (RONS) which ensures that the approximate solution stays close to the true solution of the PDE for all times. As such, the proposed method approximates the transient dynamics as well as the equilibrium density, when the latter exists. Our approximate solutions can be viewed as an evolution on a finite-dimensional statistical manifold embedded in the space of probability densities. We show that the metric tensor in RONS coincides with the Fisher information matrix on this manifold. We also discuss the interpretation of our method as a shallow neural network with Gaussian activation functions and time-varying parameters. In contrast to existing deep learning methods, our method is interpretable, requires no training, and automatically ensures that the approximate solution satisfies all properties of a probability density.

In this paper paired comparison models with stochastic background are investigated. We focus on the models which allow three options for choice and the parameters are estimated by maximum likelihood method. The existence and uniqueness of the estimator is a key issue of the evaluation. In the case of two options, a necessary and sufficient condition is given by Ford in the Bradley-Terry model. We generalize this statement for the set of strictly log-concave distribution. Although in the case of three options necessary and sufficient condition is not known, there are two different sufficient conditions which are formulated in the literature. In this paper we generalize them, moreover we compare these conditions. Their capacities to indicate the existence of the maximum are analyzed by a large number of computer simulations. These simulations support that the new condition indicates the existence of the maximum much more frequently then the previously known ones,

In this paper, we provide a rigorous proof of convergence of the Adaptive Moment Estimate (Adam) algorithm for a wide class of optimization objectives. Despite the popularity and efficiency of the Adam algorithm in training deep neural networks, its theoretical properties are not yet fully understood, and existing convergence proofs require unrealistically strong assumptions, such as globally bounded gradients, to show the convergence to stationary points. In this paper, we show that Adam provably converges to $\epsilon$-stationary points with $\mathcal{O}(\epsilon^{-4})$ gradient complexity under far more realistic conditions. The key to our analysis is a new proof of boundedness of gradients along the optimization trajectory of Adam, under a generalized smoothness assumption according to which the local smoothness (i.e., Hessian norm when it exists) is bounded by a sub-quadratic function of the gradient norm. Moreover, we propose a variance-reduced version of Adam with an accelerated gradient complexity of $\mathcal{O}(\epsilon^{-3})$.

Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding $\epsilon$-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to $p$-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is $\Omega\big(\epsilon^{-\frac{1+p}{p}}\big)$ regarding the first setting, and $\Omega(\epsilon^{-4})$ regarding the second setting (or $\Omega(\epsilon^{-3})$ if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding $\epsilon$-stationary points of nonconvex functions with $p$-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.

Most of the existing works on provable guarantees for low-rank matrix completion algorithms rely on some unrealistic assumptions such that matrix entries are sampled randomly or the sampling pattern has a specific structure. In this work, we establish theoretical guarantee for the exact and approximate low-rank matrix completion problems which can be applied to any deterministic sampling schemes. For this, we introduce a graph having observed entries as its edge set, and investigate its graph properties involving the performance of the standard constrained nuclear norm minimization algorithm. We theoretically and experimentally show that the algorithm can be successful as the observation graph is well-connected and has similar node degrees. Our result can be viewed as an extension of the works by Bhojanapalli and Jain [2014] and Burnwal and Vidyasagar [2020], in which the node degrees of the observation graph were assumed to be the same. In particular, our theory significantly improves their results when the underlying matrix is symmetric.

Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD($\lambda$) algorithm in reinforcement learning, we introduce subtrajectory balance or SubTB($\lambda$), a GFlowNet training objective that can learn from partial action subsequences of varying lengths. We show that SubTB($\lambda$) accelerates sampler convergence in previously studied and new environments and enables training GFlowNets in environments with longer action sequences and sparser reward landscapes than what was possible before. We also perform a comparative analysis of stochastic gradient dynamics, shedding light on the bias-variance tradeoff in GFlowNet training and the advantages of subtrajectory balance.

Gradient clipping is a standard training technique used in deep learning applications such as large-scale language modeling to mitigate exploding gradients. Recent experimental studies have demonstrated a fairly special behavior in the smoothness of the training objective along its trajectory when trained with gradient clipping. That is, the smoothness grows with the gradient norm. This is in clear contrast to the well-established assumption in folklore non-convex optimization, a.k.a. $L$--smoothness, where the smoothness is assumed to be bounded by a constant $L$ globally. The recently introduced $(L_0,L_1)$--smoothness is a more relaxed notion that captures such behavior in non-convex optimization. In particular, it has been shown that under this relaxed smoothness assumption, SGD with clipping requires $O(\epsilon^{-4})$ stochastic gradient computations to find an $\epsilon$--stationary solution. In this paper, we employ a variance reduction technique, namely SPIDER, and demonstrate that for a carefully designed learning rate, this complexity is improved to $O(\epsilon^{-3})$ which is order-optimal. Our designed learning rate comprises the clipping technique to mitigate the growing smoothness. Moreover, when the objective function is the average of $n$ components, we improve the existing $O(n\epsilon^{-2})$ bound on the stochastic gradient complexity to $O(\sqrt{n} \epsilon^{-2} + n)$, which is order-optimal as well. In addition to being theoretically optimal, SPIDER with our designed parameters demonstrates comparable empirical performance against variance-reduced methods such as SVRG and SARAH in several vision tasks.

We study the decentralized online regularized linear regression algorithm over random time-varying graphs. At each time step, every node runs an online estimation algorithm consisting of an innovation term processing its own new measurement, a consensus term taking a weighted sum of estimations of its own and its neighbors with additive and multiplicative communication noises and a regularization term preventing over-fitting. It is not required that the regression matrices and graphs satisfy special statistical assumptions such as mutual independence, spatio-temporal independence or stationarity. We develop the nonnegative supermartingale inequality of the estimation error, and prove that the estimations of all nodes converge to the unknown true parameter vector almost surely if the algorithm gains, graphs and regression matrices jointly satisfy the sample path spatio-temporal persistence of excitation condition. Especially, this condition holds by choosing appropriate algorithm gains if the graphs are uniformly conditionally jointly connected and conditionally balanced, and the regression models of all nodes are uniformly conditionally spatio-temporally jointly observable, under which the algorithm converges in mean square and almost surely. In addition, we prove that the regret upper bound is $O(T^{1-\tau}\ln T)$, where $\tau\in (0.5,1)$ is a constant depending on the algorithm gains.

In this paper, we consider non-convex multi-block bilevel optimization (MBBO) problems, which involve $m\gg 1$ lower level problems and have important applications in machine learning. Designing a stochastic gradient and controlling its variance is more intricate due to the hierarchical sampling of blocks and data and the unique challenge of estimating hyper-gradient. We aim to achieve three nice properties for our algorithm: (a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling $I$ blocks and sampling $B$ samples for each sampled block per-iteration; (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator. However, it is non-trivial to achieve all of these by observing that existing works only achieve one or two of these properties. To address the involved challenges for achieving (a, b, c), we propose two stochastic algorithms by using advanced blockwise variance-reduction techniques for tracking the Hessian matrices (for low-dimensional problems) or the Hessian-vector products (for high-dimensional problems), and prove an iteration complexity of $O(\frac{m\epsilon^{-3}\mathbb{I}(I<m)}{I\sqrt{I}} + \frac{m\epsilon^{-3}}{I\sqrt{B}})$ for finding an $\epsilon$-stationary point under appropriate conditions. We also conduct experiments to verify the effectiveness of the proposed algorithms comparing with existing MBBO algorithms.

As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.

北京阿比特科技有限公司