We present model predictive selection (MPS), a new method for selecting the stable closed-loop (CL) equilibrium attitude-error quaternion (AEQ) of an uncrewed aerial vehicle (UAV) during the execution of high-speed yaw maneuvers. In this approach, we minimize the cost of yawing measured with a performance figure of merit (PFM) that takes into account both the aerodynamic-torque control input and attitude-error state of the UAV. Specifically, this method uses a control law with a term whose sign is dynamically switched in real time to select, between two options, the torque associated with the lesser cost of rotation as predicted by a dynamical model of the UAV derived from first principles. This problem is relevant because the selection of the stable CL equilibrium AEQ significantly impacts the performance of a UAV during high-speed rotational flight, from both the power and control-error perspectives. To test and demonstrate the functionality and performance of the proposed method, we present data collected during one hundred real-time high-speed yaw-tracking flight experiments. These results highlight the superior capabilities of the proposed MPS-based scheme when compared to a benchmark controller commonly used in aerial robotics, as the PFM used to quantify the cost of flight is reduced by 60.30 %, on average. To our best knowledge, these are the first flight-test results that thoroughly demonstrate, evaluate, and compare the performance of a real-time controller capable of selecting the stable CL equilibrium AEQ during operation.
We explore the design space for the static visualization of datasets with quantitative attributes that vary over multiple orders of magnitude-we call these attributes Orders of Magnitude Values (OMVs)-and provide design guidelines and recommendations on effective visual encodings for OMVs. Current charts rely on linear or logarithmic scales to visualize values, leading to limitations in performing simple tasks for OMVs. In particular, linear scales prevent the reading of smaller magnitudes and their comparisons, while logarithmic scales are challenging for the general public to understand. Our design space leverages the approach of dividing OMVs into two different parts: mantissa and exponent, in a way similar to scientific notation. This separation allows for a visual encoding of both parts. For our exploration, we use four datasets, each with two attributes: an OMV, divided into mantissa and exponent, and a second attribute that is nominal, ordinal, time, or quantitative. We start from the original design space described by the Grammar of Graphics and systematically generate all possible visualizations for these datasets, employing different marks and visual channels. We refine this design space by enforcing integrity constraints from visualization and graphical perception literature. Through a qualitative assessment of all viable combinations, we discuss the most effective visualizations for OMVs, focusing on channel and task effectiveness. The article's main contributions are 1) the presentation of the design space of OMVs, 2) the generation of a large number of OMV visualizations, among which some are novel and effective, 3) the refined definition of a scale that we call E+M for OMVs, and 4) guidelines and recommendations for designing effective OMV visualizations. These efforts aim to enrich visualization systems to better support data with OMVs and guide future research.
This study evaluates three different lemmatization approaches to Estonian -- Generative character-level models, Pattern-based word-level classification models, and rule-based morphological analysis. According to our experiments, a significantly smaller Generative model consistently outperforms the Pattern-based classification model based on EstBERT. Additionally, we observe a relatively small overlap in errors made by all three models, indicating that an ensemble of different approaches could lead to improvements.
Previous models for learning the semantic vectors of items and their groups, such as words, sentences, nodes, and graphs, using distributed representation have been based on the assumption that an item corresponds to one vector composed of dimensions corresponding to hidden contexts in the target. Multiple senses of an item are represented by assigning a vector to each of the domains where the item may appear or reflecting the context to the sense of the item. However, there may be multiple distinct senses of an item that change or evolve dynamically, according to the contextual shift or the emergence of novel contexts even within one domain, similar to a living entity evolving with environmental shifts. Setting the scope of disambiguity of items for sensemaking, the author presents a method in which a word or item in the data embraces multiple semantic vectors that evolve via interaction with others, similar to a cell embracing chromosomes crossing over with each other. We obtained two preliminary results: (1) the role of a word that evolves to acquire the largest or lower-middle variance of semantic vectors tends to be explainable by the author of the text; (2) the epicenters of earthquakes that acquire larger variance via crossover, corresponding to the interaction with diverse areas of land crust, are likely to correspond to the epicenters of forthcoming large earthquakes.
Recent advances in the field of generative artificial intelligence (AI) have blurred the lines between authentic and machine-generated content, making it almost impossible for humans to distinguish between such media. One notable consequence is the use of AI-generated images for fake profiles on social media. While several types of disinformation campaigns and similar incidents have been reported in the past, a systematic analysis has been lacking. In this work, we conduct the first large-scale investigation of the prevalence of AI-generated profile pictures on Twitter. We tackle the challenges of a real-world measurement study by carefully integrating various data sources and designing a multi-stage detection pipeline. Our analysis of nearly 15 million Twitter profile pictures shows that 0.052% were artificially generated, confirming their notable presence on the platform. We comprehensively examine the characteristics of these accounts and their tweet content, and uncover patterns of coordinated inauthentic behavior. The results also reveal several motives, including spamming and political amplification campaigns. Our research reaffirms the need for effective detection and mitigation strategies to cope with the potential negative effects of generative AI in the future.
We propose a method to couple local and nonlocal diffusion models. By inheriting desirable properties such as patch tests, asymptotic compatibility and unintrusiveness from related splice and optimization-based coupling schemes, it enables the use of weak (or variational) formulations, is computationally efficient and straightforward to implement. We prove well-posedness of the coupling scheme and demonstrate its properties and effectiveness in a variety of numerical examples.
This manuscript presents a novel Bayesian varying coefficient quantile regression (BVCQR) model designed to assess the longitudinal effects of chemical exposure mixtures on children's neurodevelopment. Recognizing the complexity and high-dimensionality of environmental exposures, the proposed approach addresses critical gaps in existing research by offering a method that can manage the sparsity of data and provide interpretable results. The proposed BVCQR model estimates the effects of mixtures on neurodevelopmental outcomes at specific ages, leveraging a horseshoe prior for sparsity and utilizing a Bayesian method for uncertainty quantification. Our simulations demonstrate the model's robustness and effectiveness in handling high-dimensional data, offering significant improvements over traditional models. The model's application to the Health Outcomes and Measures of the Environment (HOME) Study further illustrates its utility in identifying significant chemical exposures affecting children's growth and development. The findings underscore the potential of BVCQR in environmental health research, providing a sophisticated tool for analyzing the longitudinal impact of complex chemical mixtures, with implications for future studies aimed at understanding and mitigating environmental risks to child health.
To comprehensively gauge the capacity of current models for complex reasoning, it is crucial to assess their step-by-step reasoning in a scalable manner. Established reference-based evaluation metrics rely on human-annotated reasoning chains as references to assess the model-derived chains. However, such "gold-standard" human-written reasoning chains may not be unique and their acquisition is often labor-intensive. Existing reference-free reasoning evaluation metrics, while eliminating the need for human-crafted reasoning chains as references, often require fine-tuning with human-derived chains before evaluation, complicating the process and questioning their adaptability to other datasets. To address these challenges, we harness GPT-4 to automatically evaluate reasoning chain quality, thereby removing the dependency on human-written reasoning chains for both model fine-tuning and evaluative purposes. Leveraging the Socratic method, we develop SocREval ({\bf Soc}ratic Method-Inspired {\bf R}easoning {\bf Eval}uation), a novel approach for prompt design in reference-free reasoning evaluation. Empirical results from four human annotated datasets reveal that SocREval significantly improves GPT-4's performance, surpassing existing reference-free and reference-based reasoning evaluation metrics. Beyond its demonstrated efficacy, SocREval, proves to be both cost-efficient and robust to prompt writing and example selection, as substantiated by our in-depth analysis.
As the complexity of machine learning (ML) models increases and their application in different (and critical) domains grows, there is a strong demand for more interpretable and trustworthy ML. A direct, model-agnostic, way to interpret such models is to train surrogate models-such as rule sets and decision trees-that sufficiently approximate the original ones while being simpler and easier-to-explain. Yet, rule sets can become very lengthy, with many if-else statements, and decision tree depth grows rapidly when accurately emulating complex ML models. In such cases, both approaches can fail to meet their core goal-providing users with model interpretability. To tackle this, we propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models by providing surrogate decision stumps (one-level decision trees) generated with the Adaptive Boosting (AdaBoost) technique. DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps, creating attribute-based explanations with weighted stumps to justify decision making, and analysing the impact of rule overriding on training instance allocation between one or more stumps. An independent test set allows users to monitor the effectiveness of manual rule changes and form hypotheses based on case-by-case analyses. We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
Data analysts have long sought to turn unstructured text data into meaningful concepts. Though common, topic modeling and clustering focus on lower-level keywords and require significant interpretative work. We introduce concept induction, a computational process that instead produces high-level concepts, defined by explicit inclusion criteria, from unstructured text. For a dataset of toxic online comments, where a state-of-the-art BERTopic model outputs "women, power, female," concept induction produces high-level concepts such as "Criticism of traditional gender roles" and "Dismissal of women's concerns." We present LLooM, a concept induction algorithm that leverages large language models to iteratively synthesize sampled text and propose human-interpretable concepts of increasing generality. We then instantiate LLooM in a mixed-initiative text analysis tool, enabling analysts to shift their attention from interpreting topics to engaging in theory-driven analysis. Through technical evaluations and four analysis scenarios ranging from literature review to content moderation, we find that LLooM's concepts improve upon the prior art of topic models in terms of quality and data coverage. In expert case studies, LLooM helped researchers to uncover new insights even from familiar datasets, for example by suggesting a previously unnoticed concept of attacks on out-party stances in a political social media dataset.
Gaussian process (GP) regression is a Bayesian nonparametric method for regression and interpolation, offering a principled way of quantifying the uncertainties of predicted function values. For the quantified uncertainties to be well-calibrated, however, the kernel of the GP prior has to be carefully selected. In this paper, we theoretically compare two methods for choosing the kernel in GP regression: cross-validation and maximum likelihood estimation. Focusing on the scale-parameter estimation of a Brownian motion kernel in the noiseless setting, we prove that cross-validation can yield asymptotically well-calibrated credible intervals for a broader class of ground-truth functions than maximum likelihood estimation, suggesting an advantage of the former over the latter. Finally, motivated by the findings, we propose interior cross validation, a procedure that adapts to an even broader class of ground-truth functions.