亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The asymptotic rate vs. distance problem is a long-standing fundamental problem in coding theory. The best upper bound to date was given in 1977 and has received since then numerous proofs and interpretations. Here we provide a new, elementary proof of this bound based on counting walks in the Hamming cube.

相關內容

A model of computation for which reasonable yet still incomplete lower bounds are known is the read-once branching program. Here variants of complexity measures successful in the study of read-once branching programs are defined and studied. Some new or simpler proofs of known bounds are uncovered. Branching program resources and the new measures are compared extensively. The new variants are developed in part in the hope of tackling read-k branching programs for the tree evaluation problem studied in Cook et al. Other computation problems are studied as well. In particular, a common view of a function studied by Gal and a function studied by Bollig and Wegener leads to the general combinatorics of blocking sets. Technical combinatorial results of independent interest are obtained. New leads towards further progress are discussed. An exponential lower bound for non-deterministic read-k branching programs for the GEN function is also derived, independently from the new measures.

For any given alphabet of size $q$, a Homopolymer Free code (HF code) refers to an $(n, M, d)_q$ code of length $n$, size $M$ and minimum Hamming distance $d$, where all the codewords are homopolymer free sequences. For any given alphabet, this work provides upper and lower bounds on the maximum size of any HF code using Sphere Packing bound and Gilbert-Varshamov bound. Further, upper and lower bounds on the maximum size of HF codes for various HF code families are calculated. Also, as a specific case, upper and lower bounds are obtained on the maximum size of homopolymer free DNA codes.

We study the maximin share (MMS) fair allocation of $m$ indivisible chores to $n$ agents who have costs for completing the assigned chores. It is known that exact MMS fairness cannot be guaranteed, and so far the best-known approximation for additive cost functions is $\frac{13}{11}$ by Huang and Segal-Halevi [EC, 2023]; however, beyond additivity, very little is known. In this work, we first prove that no algorithm can ensure better than $\min\{n,\frac{\log m}{\log \log m}\}$-approximation if the cost functions are submodular. This result also shows a sharp contrast with the allocation of goods where constant approximations exist as shown by Barman and Krishnamurthy [TEAC, 2020] and Ghodsi et al. [AIJ, 2022]. We then prove that for subadditive costs, there always exists an allocation that is $\min\{n,\lceil\log m\rceil\}$-approximation, and thus the approximation ratio is asymptotically tight. Besides multiplicative approximation, we also consider the ordinal relaxation, 1-out-of-$d$ MMS, which was recently proposed by Hosseini et al. [JAIR and AAMAS, 2022]. Our impossibility result implies that for any $d\ge 2$, a 1-out-of-$d$ MMS allocation may not exist. Due to these hardness results for general subadditive costs, we turn to studying two specific subadditive costs, namely, bin packing and job scheduling. For both settings, we show that constant approximate allocations exist for both multiplicative and ordinal relaxations of MMS.

We survey recent progress on efficient algorithms for approximately diagonalizing a square complex matrix in the models of rational (variable precision) and finite (floating point) arithmetic. This question has been studied across several research communities for decades, but many mysteries remain. We present several open problems which we hope will be of broad interest.

In single-objective optimization, it is well known that evolutionary algorithms also without further adjustments can tolerate a certain amount of noise in the evaluation of the objective function. In contrast, this question is not at all understood for multi-objective optimization. In this work, we conduct the first mathematical runtime analysis of a simple multi-objective evolutionary algorithm (MOEA) on a classic benchmark in the presence of noise in the objective functions. We prove that when bit-wise prior noise with rate $p \le \alpha/n$, $\alpha$ a suitable constant, is present, the \emph{simple evolutionary multi-objective optimizer} (SEMO) without any adjustments to cope with noise finds the Pareto front of the OneMinMax benchmark in time $O(n^2\log n)$, just as in the case without noise. Given that the problem here is to arrive at a population consisting of $n+1$ individuals witnessing the Pareto front, this is a surprisingly strong robustness to noise (comparably simple evolutionary algorithms cannot optimize the single-objective OneMax problem in polynomial time when $p = \omega(\log(n)/n)$). Our proofs suggest that the strong robustness of the MOEA stems from its implicit diversity mechanism designed to enable it to compute a population covering the whole Pareto front. Interestingly this result only holds when the objective value of a solution is determined only once and the algorithm from that point on works with this, possibly noisy, objective value. We prove that when all solutions are reevaluated in each iteration, then any noise rate $p = \omega(\log(n)/n^2)$ leads to a super-polynomial runtime. This is very different from single-objective optimization, where it is generally preferred to reevaluate solutions whenever their fitness is important and where examples are known such that not reevaluating solutions can lead to catastrophic performance losses.

This paper addresses the $\epsilon$-close parameter tuning problem for Bayesian Networks (BNs): find a minimal $\epsilon$-close amendment of probability entries in a given set of (rows in) conditional probability tables that make a given quantitative constraint on the BN valid. Based on the state-of-the-art "region verification" techniques for parametric Markov chains, we propose an algorithm whose capabilities go beyond any existing techniques. Our experiments show that $\epsilon$-close tuning of large BN benchmarks with up to 8 parameters is feasible. In particular, by allowing (i) varied parameters in multiple CPTs and (ii) inter-CPT parameter dependencies, we treat subclasses of parametric BNs that have received scant attention so far.

We give new bounds for the single-nomination model of impartial selection, a problem proposed by Holzman and Moulin (Econometrica, 2013). A selection mechanism, which may be randomized, selects one individual from a group of $n$ based on nominations among members of the group; a mechanism is impartial if the selection of an individual is independent of nominations cast by that individual, and $\alpha$-optimal if under any circumstance the expected number of nominations received by the selected individual is at least $\alpha$ times that received by any individual. In a many-nominations model, where individuals may cast an arbitrary number of nominations, the so-called permutation mechanism is $1/2$-optimal, and this is best possible. In the single-nomination model, where each individual casts exactly one nomination, the permutation mechanism does better and prior to this work was known to be $67/108$-optimal but no better than $2/3$-optimal. We show that it is in fact $2/3$-optimal for all $n$. This result is obtained via tight bounds on the performance of the mechanism for graphs with maximum degree $\Delta$, for any $\Delta$, which we prove using an adversarial argument. We then show that the permutation mechanism is not best possible; indeed, by combining the permutation mechanism, another mechanism called plurality with runner-up, and some new ideas, $2105/3147$-optimality can be achieved for all $n$. We finally give new upper bounds on $\alpha$ for any $\alpha$-optimal impartial mechanism. They improve on the existing upper bounds for all $n\geq 7$ and imply that no impartial mechanism can be better than $76/105$-optimal for all $n$; they do not preclude the existence of a $(3/4-\varepsilon)$-optimal impartial mechanism for arbitrary $\varepsilon>0$ if $n$ is large.

VBP is the class of polynomial families that can be computed by the determinant of a symbolic matrix of the form $A_0 + \sum_{i=1}^n A_ix_i$ where the size of each $A_i$ is polynomial in the number of variables (equivalently, computable by polynomial-sized algebraic branching programs (ABP)). A major open problem in geometric complexity theory (GCT) is to determine whether VBP is closed under approximation. The power of approximation is well understood for some restricted models of computation, e.g., the class of depth-two circuits, read-once oblivious ABPs (ROABP), monotone ABPs, depth-three circuits of bounded top fan-in, and width-two ABPs. The former three classes are known to be closed under approximation [Bl"{a}ser, Ikenmeyer, Mahajan, Pandey, and Saurabh (2020)], whereas the approximative closure of the last one captures the whole class of polynomial families computable by polynomial-sized formulas [Bringmann, Ikenmeyer, and Zuiddam (2017)]. In this work, we consider the subclass of VBP computed by the determinant of a symbolic matrix of the form $A_0 + \sum_{i=1}^n A_ix_i$ where for each $1\leq i \leq n$, $A_i$ is of rank one. It has been studied extensively [Edmonds(1968), Edmonds(1979)] and efficient identity testing algorithms are known [Lov"{a}sz (1989), Gurjar and Thierauf (2020)]. We show that this class is closed under approximation. In the language of algebraic geometry, we show that the set obtained by taking coordinatewise products of pairs of points from (the Pl\"{u}cker embedding of) a Grassmannian variety is closed.

The rank invariant (RI), one of the best known invariants of persistence modules $M$ over a given poset P, is defined as the map sending each comparable pair $p\leq q$ in P to the rank of the linear map $M(p\leq q)$. The recently introduced notion of generalized rank invariant (GRI) acquires more discriminating power than the RI at the expense of enlarging the domain of RI to the set Int(P) of intervals of P or to an even larger set. Given that the size of Int(P) can be much larger than that of the domain of the RI, restricting the domain of the GRI to smaller, more manageable subcollections $\mathcal{I}$ of Int(P) would be desirable to reduce the total cost of computing the GRI. This work studies the tension which exists between computational efficiency and strength when restricting the domain of the GRI to different choices of $\mathcal{I}$. In particular, we prove that the discriminating power of the GRI over restricted collections $\mathcal{I}$ strictly increases as $\mathcal{I}$ interpolates between the domain of RI and Int(P). Along the way, some well-known results regarding the RI or GRI from the literature are contextualized within the framework of the M\"obius inversion formula and we obtain a notion of generalize persistence diagram that does not require local finiteness of the indexing poset for persistence modules. Lastly, motivated by a recent finding that zigzag persistence can be used to compute the GRI, we pay a special attention to comparing the discriminating power of the GRI for persistence modules $M$ over $\mathbb{Z}^2$ with the so-called Zigzag-path-Indexed Barcode (ZIB), a map sending each zigzag path $\Gamma$ in $\mathbb{Z}^2$ to the barcode of the restriction of $M$ to $\Gamma$. Clarifying the connection between the GRI and the ZIB is potentially important to understand to what extent zigzag persistence algorithms can be exploited for computing the GRI.

We consider a mixed finite element method for a biharmonic equation with clamped boundary conditions based on biorthogonal systems with weakly imposed Dirichlet boundary condition. We show that the weak imposition of the boundary condition arising from a natural minimisation formulation allows to get an optimal a priori error estimate for the finite element scheme improving the existing error estimate for such a formulation without weakly imposed Dirichlet boundary condition. We also briefly outline the algebraic formulation arising from the finite element method.

小貼士
登錄享
相關主題
北京阿比特科技有限公司