亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomass\'e and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows to solve many otherwise hard problems efficiently. Our paper focuses on a comparison of twin-width to the more traditional tree-width on sparse graphs. Namely, we prove that if a graph $G$ of twin-width at most $2$ contains no $K_{t,t}$ subgraph for some integer $t$, then the tree-width of $G$ is bounded by a polynomial function of $t$. As a consequence, for any sparse graph class $\mathcal{C}$ we obtain a polynomial time algorithm which for any input graph $G \in \mathcal{C}$ either outputs a contraction sequence of width at most $c$ (where $c$ depends only on $\mathcal{C}$), or correctly outputs that $G$ has twin-width more than $2$. On the other hand, we present an easy example of a graph class of twin-width $3$ with unbounded tree-width, showing that our result cannot be extended to higher values of twin-width.

相關內容

Anomalies are rare and anomaly detection is often therefore framed as One-Class Classification (OCC), i.e. trained solely on normalcy. Leading OCC techniques constrain the latent representations of normal motions to limited volumes and detect as abnormal anything outside, which accounts satisfactorily for the openset'ness of anomalies. But normalcy shares the same openset'ness property since humans can perform the same action in several ways, which the leading techniques neglect. We propose a novel generative model for video anomaly detection (VAD), which assumes that both normality and abnormality are multimodal. We consider skeletal representations and leverage state-of-the-art diffusion probabilistic models to generate multimodal future human poses. We contribute a novel conditioning on the past motion of people and exploit the improved mode coverage capabilities of diffusion processes to generate different-but-plausible future motions. Upon the statistical aggregation of future modes, an anomaly is detected when the generated set of motions is not pertinent to the actual future. We validate our model on 4 established benchmarks: UBnormal, HR-UBnormal, HR-STC, and HR-Avenue, with extensive experiments surpassing state-of-the-art results.

Large Language Models (LLMs) such as ChatGPT have received enormous attention over the past year and are now used by hundreds of millions of people every day. The rapid adoption of this technology naturally raises questions about the possible biases such models might exhibit. In this work, we tested one of these models (GPT-3) on a range of cognitive effects, which are systematic patterns that are usually found in human cognitive tasks. We found that LLMs are indeed prone to several human cognitive effects. Specifically, we show that the priming, distance, SNARC, and size congruity effects were presented with GPT-3, while the anchoring effect is absent. We describe our methodology, and specifically the way we converted real-world experiments to text-based experiments. Finally, we speculate on the possible reasons why GPT-3 exhibits these effects and discuss whether they are imitated or reinvented.

Recently, there has been a growing interest in learning and explaining causal effects within Neural Network (NN) models. By virtue of NN architectures, previous approaches consider only direct and total causal effects assuming independence among input variables. We view an NN as a structural causal model (SCM) and extend our focus to include indirect causal effects by introducing feedforward connections among input neurons. We propose an ante-hoc method that captures and maintains direct, indirect, and total causal effects during NN model training. We also propose an algorithm for quantifying learned causal effects in an NN model and efficient approximation strategies for quantifying causal effects in high-dimensional data. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the causal effects learned by our ante-hoc method better approximate the ground truth effects compared to existing methods.

We study the partial search order problem (PSOP) proposed recently by Scheffler [WG 2022]. Given a graph $G$ together with a partial order over the set of vertices of $G$, this problem determines if there is an $\mathcal{S}$-ordering that is consistent with the given partial order, where $\mathcal{S}$ is a graph search paradigm like BFS, DFS, etc. This problem naturally generalizes the end-vertex problem which has received much attention over the past few years. It also generalizes the so-called ${\mathcal{F}}$-tree recognition problem which has just been studied in the literature recently. Our main contribution is a polynomial-time dynamic programming algorithm for the PSOP of the maximum cardinality search (MCS) restricted to chordal graphs. This resolves one of the most intriguing open questions left in the work of Scheffler [WG 2022]. To obtain our result, we propose the notion of layer structure and study numerous related structural properties which might be of independent interest.

We tackle the problem of feature unlearning from a pre-trained image generative model: GANs and VAEs. Unlike a common unlearning task where an unlearning target is a subset of the training set, we aim to unlearn a specific feature, such as hairstyle from facial images, from the pre-trained generative models. As the target feature is only presented in a local region of an image, unlearning the entire image from the pre-trained model may result in losing other details in the remaining region of the image. To specify which features to unlearn, we collect randomly generated images that contain the target features. We then identify a latent representation corresponding to the target feature and then use the representation to fine-tune the pre-trained model. Through experiments on MNIST and CelebA datasets, we show that target features are successfully removed while keeping the fidelity of the original models. Further experiments with an adversarial attack show that the unlearned model is more robust under the presence of malicious parties.

Artificial Intelligence (AI) is rapidly transforming society, creating an urgent need to ensure its positive impact. In this article, we take a positive design approach towards this issue, viewing it as a matter of designing AI systems that actively support human wellbeing. However, designing wellbeing-aligned AI systems is difficult. This article adopts a cybernetic perspective to identify twelve key challenges across two categories: lack of knowledge and lack of motivation. Knowledge barriers include challenges in conceptualizing, measuring, and optimizing for wellbeing, then designing appropriate AI actions. Motivation barriers include misaligned incentives, financial and publicity risks, and a lack of data access preventing (third-party) research on wellbeing. To address these challenges we have captured our key takeaways in a research agenda related to 1) advancing the scientific understanding of the impact of AI systems on wellbeing, and 2) guiding design actions on how AI systems might be intentionally designed to promote and sustain wellbeing.

Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the \textbf{D}ependency-Enhanced \textbf{A}daptive \textbf{F}usion \textbf{A}ttention (\textbf{DAFA}), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, \textbf{\emph{(i)}} DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.

Conversational search has seen increased recent attention in both the IR and NLP communities. It seeks to clarify and solve a user's search need through multi-turn natural language interactions. However, most existing systems are trained and demonstrated with recorded or artificial conversation logs. Eventually, conversational search systems should be trained, evaluated, and deployed in an open-ended setting with unseen conversation trajectories. A key challenge is that training and evaluating such systems both require a human-in-the-loop, which is expensive and does not scale. One strategy for this is to simulate users, thereby reducing the scaling costs. However, current user simulators are either limited to only respond to yes-no questions from the conversational search system, or unable to produce high quality responses in general. In this paper, we show that current state-of-the-art user simulation system could be significantly improved by replacing it with a smaller but advanced natural language generation model. But rather than merely reporting this new state-of-the-art, we present an in-depth investigation of the task of simulating user response for conversational search. Our goal is to supplement existing works with an insightful hand-analysis of what challenges are still unsolved by the advanced model, as well as to propose our solutions for them. The challenges we identified include (1) dataset noise, (2) a blind spot that is difficult for existing models to learn, and (3) a specific type of misevaluation in the standard empirical setup. Except for the dataset noise issue, we propose solutions to cover the training blind spot and to avoid the misevaluation. Our proposed solutions lead to further improvements. Our best system improves the previous state-of-the-art significantly.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

北京阿比特科技有限公司