亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

L1-ball-type priors are a recent generalization of the spike-and-slab priors. By transforming a continuous precursor distribution to the L1-ball boundary, it induces exact zeros with positive prior and posterior probabilities. With great flexibility in choosing the precursor and threshold distributions, we can easily specify models under structured sparsity, such as those with dependent probability for zeros and smoothness among the non-zeros. Motivated to significantly accelerate the posterior computation, we propose a new data augmentation that leads to a fast block Gibbs sampling algorithm. The latent variable, named ``anti-correlation Gaussian'', cancels out the quadratic exponent term in the latent Gaussian distribution, making the parameters of interest conditionally independent so that they can be updated in a block. Compared to existing algorithms such as the No-U-Turn sampler, the new blocked Gibbs sampler has a very low computing cost per iteration and shows rapid mixing of Markov chains. We establish the geometric ergodicity guarantee of the algorithm in linear models. Further, we show useful extensions of our algorithm for posterior estimation of general latent Gaussian models, such as those involving multivariate truncated Gaussian or latent Gaussian process. Keywords: Blocked Gibbs sampler; Fast Mixing of Markov Chains; Latent Gaussian Models; Soft-thresholding.

相關內容

Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for cancer treatments. However, CBCT images often suffer from streaking artifacts and noise caused by under-rate sampling projections and low-dose exposure, resulting in low clarity and information loss. While recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts, they have limited performance on preserving anatomical details since conventional pixel-to-pixel loss functions are incapable of describing detailed anatomy. To address this issue, we propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging via a multi-task customized feature-to-feature perceptual loss function. The framework comprises two main components: a multi-task learning feature-selection network(MTFS-Net) for customizing the perceptual loss function; and a CBCT-to-CT translation network guided by feature-to-feature perceptual loss, which uses advanced generative models such as U-Net, GAN and CycleGAN. Our experiments showed that the proposed framework can generate synthesized CT (sCT) images for the lung that achieved a high similarity to CT images, with an average SSIM index of 0.9869 and an average PSNR index of 39.9621. The sCT images also achieved visually pleasing performance with effective artifacts suppression, noise reduction, and distinctive anatomical details preservation. Our experiment results indicate that the proposed framework outperforms the state-of-the-art models for pulmonary CBCT enhancement. This framework holds great promise for generating high-quality anatomical imaging from CBCT that is suitable for various clinical applications.

Creating believable motions for various characters has long been a goal in computer graphics. Current learning-based motion synthesis methods depend on extensive motion datasets, which are often challenging, if not impossible, to obtain. On the other hand, pose data is more accessible, since static posed characters are easier to create and can even be extracted from images using recent advancements in computer vision. In this paper, we utilize this alternative data source and introduce a neural motion synthesis approach through retargeting. Our method generates plausible motions for characters that have only pose data by transferring motion from an existing motion capture dataset of another character, which can have drastically different skeletons. Our experiments show that our method effectively combines the motion features of the source character with the pose features of the target character, and performs robustly with small or noisy pose data sets, ranging from a few artist-created poses to noisy poses estimated directly from images. Additionally, a conducted user study indicated that a majority of participants found our retargeted motion to be more enjoyable to watch, more lifelike in appearance, and exhibiting fewer artifacts. Project page: //cyanzhao42.github.io/pose2motion

An important yet underexplored question in the PAC-Bayes literature is how much tightness we lose by restricting the posterior family to factorized Gaussian distributions when optimizing a PAC-Bayes bound. We investigate this issue by estimating data-independent PAC-Bayes bounds using the optimal posteriors, comparing them to bounds obtained using MFVI. Concretely, we (1) sample from the optimal Gibbs posterior using Hamiltonian Monte Carlo, (2) estimate its KL divergence from the prior with thermodynamic integration, and (3) propose three methods to obtain high-probability bounds under different assumptions. Our experiments on the MNIST dataset reveal significant tightness gaps, as much as 5-6\% in some cases.

We design an additive approximation scheme for estimating the cost of the min-weight bipartite matching problem: given a bipartite graph with non-negative edge costs and $\varepsilon > 0$, our algorithm estimates the cost of matching all but $O(\varepsilon)$-fraction of the vertices in truly subquadratic time $O(n^{2-\delta(\varepsilon)})$. Our algorithm has a natural interpretation for computing the Earth Mover's Distance (EMD), up to a $\varepsilon$-additive approximation. Notably, we make no assumptions about the underlying metric (more generally, the costs do not have to satisfy triangle inequality). Note that compared to the size of the instance (an arbitrary $n \times n$ cost matrix), our algorithm runs in {\em sublinear} time. Our algorithm can approximate a slightly more general problem: max-cardinality bipartite matching with a knapsack constraint, where the goal is to maximize the number of vertices that can be matched up to a total cost $B$.

Robust fine-tuning aims to achieve competitive in-distribution (ID) performance while maintaining the out-of-distribution (OOD) robustness of a pre-trained model when transferring it to a downstream task. Recently, projected gradient descent has been successfully used in robust fine-tuning by constraining the deviation from the initialization of the fine-tuned model explicitly through projection. However, algorithmically, two limitations prevent this method from being adopted more widely, scalability and efficiency. In this paper, we propose a new projection-based fine-tuning algorithm, Fast Trainable Projection (FTP) for computationally efficient learning of per-layer projection constraints, resulting in an average $35\%$ speedup on our benchmarks compared to prior works. FTP can be combined with existing optimizers such as AdamW, and be used in a plug-and-play fashion. Finally, we show that FTP is a special instance of hyper-optimizers that tune the hyper-parameters of optimizers in a learnable manner through nested differentiation. Empirically, we show superior robustness on OOD datasets, including domain shifts and natural corruptions, across four different vision tasks with five different pre-trained models. Additionally, we demonstrate that FTP is broadly applicable and beneficial to other learning scenarios such as low-label and continual learning settings thanks to its easy adaptability. The code will be available at //github.com/GT-RIPL/FTP.git.

We propose a Dynamical System (DS) approach to learn complex, possibly periodic motion plans from kinesthetic demonstrations using Neural Ordinary Differential Equations (NODE). To ensure reactivity and robustness to disturbances, we propose a novel approach that selects a target point at each time step for the robot to follow, by combining tools from control theory and the target trajectory generated by the learned NODE. A correction term to the NODE model is computed online by solving a quadratic program that guarantees stability and safety using control Lyapunov functions and control barrier functions, respectively. Our approach outperforms baseline DS learning techniques on the LASA handwriting dataset and complex periodic trajectories. It is also validated on the Franka Emika robot arm to produce stable motions for wiping and stirring tasks that do not have a single attractor, while being robust to perturbations and safe around humans and obstacles.

We present a novel retrofitting method to induce emotion aspects into pre-trained language models (PLMs) such as BERT and RoBERTa. Our method updates pre-trained network weights using contrastive learning so that the text fragments exhibiting similar emotions are encoded nearby in the representation space, and the fragments with different emotion content are pushed apart. While doing so, it also ensures that the linguistic knowledge already present in PLMs is not inadvertently perturbed. The language models retrofitted by our method, i.e., BERTEmo and RoBERTaEmo, produce emotion-aware text representations, as evaluated through different clustering and retrieval metrics. For the downstream tasks on sentiment analysis and sarcasm detection, they perform better than their pre-trained counterparts (about 1% improvement in F1-score) and other existing approaches. Additionally, a more significant boost in performance is observed for the retrofitted models over pre-trained ones in few-shot learning setting.

Unsupervised pre-training methods utilizing large and diverse datasets have achieved tremendous success across a range of domains. Recent work has investigated such unsupervised pre-training methods for model-based reinforcement learning (MBRL) but is limited to domain-specific or simulated data. In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of downstream visual control tasks. However, in-the-wild videos are complicated with various contextual factors, such as intricate backgrounds and textured appearance, which precludes a world model from extracting shared world knowledge to generalize better. To tackle this issue, we introduce Contextualized World Models (ContextWM) that explicitly separate context and dynamics modeling to overcome the complexity and diversity of in-the-wild videos and facilitate knowledge transfer between distinct scenes. Specifically, a contextualized extension of the latent dynamics model is elaborately realized by incorporating a context encoder to retain contextual information and empower the image decoder, which encourages the latent dynamics model to concentrate on essential temporal variations. Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample efficiency of MBRL in various domains, including robotic manipulation, locomotion, and autonomous driving. Code is available at this repository: //github.com/thuml/ContextWM.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.

北京阿比特科技有限公司