亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network traffic refers to the amount of data being sent and received over the internet or any system that connects computers. Analyzing and understanding network traffic is vital for improving network security and management. However, the analysis of network traffic is challenging due to the diverse nature of data packets, which often feature heterogeneous headers and encrypted payloads lacking semantics. To capture the latent semantics of traffic, a few studies have adopted pre-training techniques based on the Transformer encoder or decoder to learn the representations from massive traffic data. However, these methods typically excel in traffic understanding (classification) or traffic generation tasks. To address this issue, we develop Lens, a foundation model for network traffic that leverages the T5 architecture to learn the pre-trained representations from large-scale unlabeled data. Harnessing the strength of the encoder-decoder framework, which captures the global information while preserving the generative ability, our model can better learn the representations from raw data. To further enhance pre-training effectiveness, we design a novel loss that combines three distinct tasks: Masked Span Prediction (MSP), Packet Order Prediction (POP), and Homologous Traffic Prediction (HTP). Evaluation results across various benchmark datasets demonstrate that the proposed Lens outperforms the baselines in most downstream tasks related to both traffic understanding and generation. Notably, it also requires much less labeled data for fine-tuning compared to current methods.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議(yi)。 Publisher:IFIP。 SIT:

Large Language Models (LLMs) are being used for a wide variety of tasks. While they are capable of generating human-like responses, they can also produce undesirable output including potentially harmful information, racist or sexist language, and hallucinations. Alignment methods are designed to reduce such undesirable outputs via techniques such as fine-tuning, prompt engineering, and representation engineering. However, existing methods face several challenges: some require costly fine-tuning for every alignment task; some do not adequately remove undesirable concepts, failing alignment; some remove benign concepts, lowering the linguistic capabilities of LLMs. To address these issues, we propose Parsimonious Concept Engineering (PaCE), a novel activation engineering framework for alignment. First, to sufficiently model the concepts, we construct a large-scale concept dictionary in the activation space, in which each atom corresponds to a semantic concept. Given any alignment task, we instruct a concept partitioner to efficiently annotate the concepts as benign or undesirable. Then, at inference time, we decompose the LLM activations along the concept dictionary via sparse coding, to accurately represent the activations as linear combinations of benign and undesirable components. By removing the latter ones from the activations, we reorient the behavior of the LLM towards the alignment goal. We conduct experiments on tasks such as response detoxification, faithfulness enhancement, and sentiment revising, and show that PaCE achieves state-of-the-art alignment performance while maintaining linguistic capabilities.

Neural ODEs (NODEs) are continuous-time neural networks (NNs) that can process data without the limitation of time intervals. They have advantages in learning and understanding the evolution of complex real dynamics. Many previous works have focused on NODEs in concise forms, while numerous physical systems taking straightforward forms, in fact, belong to their more complex quasi-classes, thus appealing to a class of general NODEs with high scalability and flexibility to model those systems. This, however, may result in intricate nonlinear properties. In this paper, we introduce ControlSynth Neural ODEs (CSODEs). We show that despite their highly nonlinear nature, convergence can be guaranteed via tractable linear inequalities. In the composition of CSODEs, we introduce an extra control term for learning the potential simultaneous capture of dynamics at different scales, which could be particularly useful for partial differential equation-formulated systems. Finally, we compare several representative NNs with CSODEs on important physical dynamics under the inductive biases of CSODEs, and illustrate that CSODEs have better learning and predictive abilities in these settings.

Optimizing the reaction to network events, which is critical in tasks such as clock synchronization, multicast, and routing, becomes increasingly challenging as networks grow larger. To improve the reaction time compared to centralized solutions, the theory community has made significant progress in the design of message-passing algorithms that leverage all nodes for distributed computation, and the advent of programmable switches makes it now possible to materialize them. We propose FRANCIS, a framework and associated libraries for running message-passing algorithms on programmable switches. It features primitives that allow easy integration of such algorithms for quickly reacting to network events while optimizing resource consumption. We use FRANCIS to implement event reaction solutions that improve clock synchronization, source-routed multicast, and routing and demonstrate up to 18x reduction in reaction time.

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work (Zou et al., 2023; Mazeika et al., 2023, 2024) -- which align with OpenAI's usage policies; (3) a standardized evaluation framework at //github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at //jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Graphs are widely used as a popular representation of the network structure of connected data. Graph data can be found in a broad spectrum of application domains such as social systems, ecosystems, biological networks, knowledge graphs, and information systems. With the continuous penetration of artificial intelligence technologies, graph learning (i.e., machine learning on graphs) is gaining attention from both researchers and practitioners. Graph learning proves effective for many tasks, such as classification, link prediction, and matching. Generally, graph learning methods extract relevant features of graphs by taking advantage of machine learning algorithms. In this survey, we present a comprehensive overview on the state-of-the-art of graph learning. Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning. Major models and algorithms under these categories are reviewed respectively. We examine graph learning applications in areas such as text, images, science, knowledge graphs, and combinatorial optimization. In addition, we discuss several promising research directions in this field.

Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.

Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司