亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large enterprises face a crucial imperative to achieve the Sustainable Development Goals (SDGs), especially goal 13, which focuses on combating climate change and its impacts. To mitigate the effects of climate change, reducing enterprise Scope 3 (supply chain emissions) is vital, as it accounts for more than 90\% of total emission inventories. However, tracking Scope 3 emissions proves challenging, as data must be collected from thousands of upstream and downstream suppliers.To address the above mentioned challenges, we propose a first-of-a-kind framework that uses domain-adapted NLP foundation models to estimate Scope 3 emissions, by utilizing financial transactions as a proxy for purchased goods and services. We compared the performance of the proposed framework with the state-of-art text classification models such as TF-IDF, word2Vec, and Zero shot learning. Our results show that the domain-adapted foundation model outperforms state-of-the-art text mining techniques and performs as well as a subject matter expert (SME). The proposed framework could accelerate the Scope 3 estimation at Enterprise scale and will help to take appropriate climate actions to achieve SDG 13.

相關內容

Dynamic Ensemble Selection (DES) is a Multiple Classifier Systems (MCS) approach that aims to select an ensemble for each query sample during the selection phase. Even with the proposal of several DES approaches, no particular DES technique is the best choice for different problems. Thus, we hypothesize that selecting the best DES approach per query instance can lead to better accuracy. To evaluate this idea, we introduce the Post-Selection Dynamic Ensemble Selection (PS-DES) approach, a post-selection scheme that evaluates ensembles selected by several DES techniques using different metrics. Experimental results show that using accuracy as a metric to select the ensembles, PS-DES performs better than individual DES techniques. PS-DES source code is available in a GitHub repository

The Multiscale Hierarchical Decomposition Method (MHDM) was introduced as an iterative method for total variation regularization, with the aim of recovering details at various scales from images corrupted by additive or multiplicative noise. Given its success beyond image restoration, we extend the MHDM iterates in order to solve larger classes of linear ill-posed problems in Banach spaces. Thus, we define the MHDM for more general convex or even non-convex penalties, and provide convergence results for the data fidelity term. We also propose a flexible version of the method using adaptive convex functionals for regularization, and show an interesting multiscale decomposition of the data. This decomposition result is highlighted for the Bregman iteration method that can be expressed as an adaptive MHDM. Furthermore, we state necessary and sufficient conditions when the MHDM iteration agrees with the variational Tikhonov regularization, which is the case, for instance, for one-dimensional total variation denoising. Finally, we investigate several particular instances and perform numerical experiments that point out the robust behavior of the MHDM.

Languages disfavor word forms containing sequences of similar or identical consonants, due to the biomechanical and cognitive difficulties posed by patterns of this sort. However, the specific evolutionary processes responsible for this phenomenon are not fully understood. Words containing sequences of identical consonants may be more likely to arise than those without; processes of word form mutation may be more likely to remove than create sequences of identical consonants in word forms; finally, words containing identical consonants may die out more frequently than those without. Phylogenetic analyses of the evolution of homologous word forms indicate that words with identical consonants arise less frequently than those without, and processes which mutate word forms are more likely to remove sequences of identical consonants than introduce them. However, words with identical consonants do not die out more frequently than those without. Further analyses reveal that forms with identical consonants are replaced in basic meaning functions more frequently than words without. Taken together, results suggest that the under representation of sequences of identical consonants is overwhelmingly a byproduct of constraints on word form coinage, though processes related to word usage also serve to ensure that such patterns are infrequent in more salient vocabulary items. These findings clarify previously unknown aspects of processes of lexical evolution and competition that take place during language change, optimizing communicative systems.

This manuscript is a research resource description and presents a large and novel Electronic Health Records (EHR) data resource, American Family Cohort (AFC). The AFC data is derived from Centers for Medicare and Medicaid Services (CMS) certified American Board of Family Medicine (ABFM) PRIME registry. The PRIME registry is the largest national Qualified Clinical Data Registry (QCDR) for Primary Care. The data is converted to a popular common data model, the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The resource presents approximately 90 million encounters for 7.5 million patients. All 100% of the patients present age, gender, and address information, and 73% report race. Nealy 93% of patients have lab data in LOINC, 86% have medication data in RxNorm, 93% have diagnosis in SNOWMED and ICD, 81% have procedures in HCPCS or CPT, and 61% have insurance information. The richness, breadth, and diversity of this research accessible and research ready data is expected to accelerate observational studies in many diverse areas. We expect this resource to facilitate research in many years to come.

Lately, Large Language Models have been widely used in code generation. GPT4 is considered the most potent Large Language Model from Openai. In this paper, we examine GPT3.5 and GPT4 as coding assistants. More specifically, we have constructed appropriate tests to check whether the two systems can a) answer typical questions that can arise during the code development, b) produce reliable code, and c) contribute to code debugging. The test results are impressive. The performance of GPT4 is outstanding and signals an increase in the productivity of programmers and the reorganization of software development procedures based on these new tools.

Recent progress in Automatic Speech Recognition (ASR) has been coupled with a substantial increase in the model sizes, which may now contain billions of parameters, leading to slow inferences even with adapted hardware. In this context, several ASR models exist in various sizes, with different inference costs leading to different performance levels. Based on the observation that smaller models perform optimally on large parts of testing corpora, we propose to train a decision module, that would allow, given an audio sample, to use the smallest sufficient model leading to a good transcription. We apply our approach to two Whisper models with different sizes. By keeping the decision process computationally efficient, we build a decision module that allows substantial computational savings with reduced performance drops.

Making the contents generated by Large Language Model (LLM) such as ChatGPT, accurate, credible and traceable is crucial, especially in complex knowledge-intensive tasks that require multi-step reasoning and each of which needs knowledge to solve. Introducing Information Retrieval (IR) to provide LLM with external knowledge is good potential to solve this problem. However, where and how to introduce IR into LLM is a big challenge. Previous work has the disadvantage that the wrong knowledge retrieved by IR misleads the LLM or breaks the reasoning chain of LLM. In this paper, we propose a novel framework called Search-in-the-Chain (SearChain) for the interaction between LLM and IR to solve the challenges. First, LLM generates the global reasoning chain called Chain-of-Query (CoQ) where each node consists of an IR-oriented query and the answer to the query. Second, IR verifies the answer of each node of CoQ, it corrects the answer that is not consistent with the retrieved information when IR gives high confidence, which improves the credibility. Third, LLM can mark its missing knowledge in CoQ and IR can provide this knowledge to LLM. These three operations improve the accuracy of LLM for complex knowledge-intensive tasks in terms of reasoning ability and knowledge. Finally, SearChain generates the reasoning process and marks references to supporting documents for each reasoning step, which improves traceability. SearChain transforms the topology of reasoning from chain to tree, which can modify the reasoning direction. Experiment shows that SearChain outperforms baselines on complex knowledge-intensive tasks including multi-hop question-answering, slot filling, fact checking, and long-form question-answering.

Generative Artificial Intelligence (GenAI) in Education has in a few short months moved from being the topic of discussion around speculative education futures to a very concrete reality. It is clear that the future of education, as all industries, is collaboration with GenAI. GenAI attributes make it well suited for social and constructivist approaches to learning that value collaboration, community and the construction of knowledge and skills through active learning. This article presents an approach to designing education in collaboration with GenAI, based on digital education frameworks adapted for this new hybrid of the AI age.

We propose a parallel (distributed) version of the spectral proper orthogonal decomposition (SPOD) technique. The parallel SPOD algorithm distributes the spatial dimension of the dataset preserving time. This approach is adopted to preserve the non-distributed fast Fourier transform of the data in time, thereby avoiding the associated bottlenecks. The parallel SPOD algorithm is implemented in the PySPOD (//github.com/MathEXLab/PySPOD) library and makes use of the standard message passing interface (MPI) library, implemented in Python via mpi4py (//mpi4py.readthedocs.io/en/stable/). An extensive performance evaluation of the parallel package is provided, including strong and weak scalability analyses. The open-source library allows the analysis of large datasets of interest across the scientific community. Here, we present applications in fluid dynamics and geophysics, that are extremely difficult (if not impossible) to achieve without a parallel algorithm. This work opens the path toward modal analyses of big quasi-stationary data, helping to uncover new unexplored spatio-temporal patterns.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司