We propose a novel method for solving regression tasks using few-shot or weak supervision. At the core of our method is the fundamental observation that GANs are incredibly successful at encoding semantic information within their latent space, even in a completely unsupervised setting. For modern generative frameworks, this semantic encoding manifests as smooth, linear directions which affect image attributes in a disentangled manner. These directions have been widely used in GAN-based image editing. We show that such directions are not only linear, but that the magnitude of change induced on the respective attribute is approximately linear with respect to the distance traveled along them. By leveraging this observation, our method turns a pre-trained GAN into a regression model, using as few as two labeled samples. This enables solving regression tasks on datasets and attributes which are difficult to produce quality supervision for. Additionally, we show that the same latent-distances can be used to sort collections of images by the strength of given attributes, even in the absence of explicit supervision. Extensive experimental evaluations demonstrate that our method can be applied across a wide range of domains, leverage multiple latent direction discovery frameworks, and achieve state-of-the-art results in few-shot and low-supervision settings, even when compared to methods designed to tackle a single task.
We propose a new semi-parametric model based on Bayesian Additive Regression Trees (BART). In our approach, the response variable is approximated by a linear predictor and a BART model, where the first component is responsible for estimating the main effects and BART accounts for the non-specified interactions and non-linearities. The novelty in our approach lies in the way we change tree generation moves in BART to deal with confounding between the parametric and non-parametric components when they have covariates in common. Through synthetic and real-world examples, we demonstrate that the performance of the new semi-parametric BART is competitive when compared to regression models and other tree-based methods. The implementation of the proposed method is available at //github.com/ebprado/SP-BART.
Semantic segmentation is a challenging task in the absence of densely labelled data. Only relying on class activation maps (CAM) with image-level labels provides deficient segmentation supervision. Prior works thus consider pre-trained models to produce coarse saliency maps to guide the generation of pseudo segmentation labels. However, the commonly used off-line heuristic generation process cannot fully exploit the benefits of these coarse saliency maps. Motivated by the significant inter-task correlation, we propose a novel weakly supervised multi-task framework termed as AuxSegNet, to leverage saliency detection and multi-label image classification as auxiliary tasks to improve the primary task of semantic segmentation using only image-level ground-truth labels. Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations. The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks. The mutual boost between pseudo label updating and cross-task affinity learning enables iterative improvements on segmentation performance. Extensive experiments demonstrate the effectiveness of the proposed auxiliary learning network structure and the cross-task affinity learning method. The proposed approach achieves state-of-the-art weakly supervised segmentation performance on the challenging PASCAL VOC 2012 and MS COCO benchmarks.
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.
Despite the success of Generative Adversarial Networks (GANs), mode collapse remains a serious issue during GAN training. To date, little work has focused on understanding and quantifying which modes have been dropped by a model. In this work, we visualize mode collapse at both the distribution level and the instance level. First, we deploy a semantic segmentation network to compare the distribution of segmented objects in the generated images with the target distribution in the training set. Differences in statistics reveal object classes that are omitted by a GAN. Second, given the identified omitted object classes, we visualize the GAN's omissions directly. In particular, we compare specific differences between individual photos and their approximate inversions by a GAN. To this end, we relax the problem of inversion and solve the tractable problem of inverting a GAN layer instead of the entire generator. Finally, we use this framework to analyze several recent GANs trained on multiple datasets and identify their typical failure cases.
In this paper, we propose a novel generative adversarial network (GAN) for 3D point clouds generation, which is called tree-GAN. To achieve state-of-the-art performance for multi-class 3D point cloud generation, a tree-structured graph convolution network (TreeGCN) is introduced as a generator for tree-GAN. Because TreeGCN performs graph convolutions within a tree, it can use ancestor information to boost the representation power for features. To evaluate GANs for 3D point clouds accurately, we develop a novel evaluation metric called Frechet point cloud distance (FPD). Experimental results demonstrate that the proposed tree-GAN outperforms state-of-the-art GANs in terms of both conventional metrics and FPD, and can generate point clouds for different semantic parts without prior knowledge.
We study object recognition under the constraint that each object class is only represented by very few observations. In such cases, naive supervised learning would lead to severe over-fitting in deep neural networks due to limited training data. We tackle this problem by creating much more training data through label propagation from the few labeled examples to a vast collection of unannotated images. Our main insight is that such a label propagation scheme can be highly effective when the similarity metric used for propagation is learned and transferred from other related domains with lots of data. We test our approach on semi-supervised learning, transfer learning and few-shot recognition, where we learn our similarity metric using various supervised/unsupervised pretraining methods, and transfer it to unlabeled data across different data distributions. By taking advantage of unlabeled data in this way, we achieve significant improvements on all three tasks. Notably, our approach outperforms current state-of-the-art techniques by an absolute $20\%$ for semi-supervised learning on CIFAR10, $10\%$ for transfer learning from ImageNet to CIFAR10, and $6\%$ for few-shot recognition on mini-ImageNet, when labeled examples are limited.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage could come from similar but different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.
In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.
We present FusedGAN, a deep network for conditional image synthesis with controllable sampling of diverse images. Fidelity, diversity and controllable sampling are the main quality measures of a good image generation model. Most existing models are insufficient in all three aspects. The FusedGAN can perform controllable sampling of diverse images with very high fidelity. We argue that controllability can be achieved by disentangling the generation process into various stages. In contrast to stacked GANs, where multiple stages of GANs are trained separately with full supervision of labeled intermediate images, the FusedGAN has a single stage pipeline with a built-in stacking of GANs. Unlike existing methods, which requires full supervision with paired conditions and images, the FusedGAN can effectively leverage more abundant images without corresponding conditions in training, to produce more diverse samples with high fidelity. We achieve this by fusing two generators: one for unconditional image generation, and the other for conditional image generation, where the two partly share a common latent space thereby disentangling the generation. We demonstrate the efficacy of the FusedGAN in fine grained image generation tasks such as text-to-image, and attribute-to-face generation.