亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Threshold queries are an important class of queries that only require computing or counting answers up to a specified threshold value. To the best of our knowledge, threshold queries have been largely disregarded in the research literature, which is surprising considering how common they are in practice. In this paper, we present a deep theoretical analysis of threshold query evaluation and show that thresholds can be used to significantly improve the asymptotic bounds of state-of-the-art query evaluation algorithms. We also empirically show that threshold queries are significant in practice. In surprising contrast to conventional wisdom, we found important scenarios in real-world data sets in which users are interested in computing the results of queries up to a certain threshold, independent of a ranking function that orders the query results by importance.

相關內容

Join query evaluation with ordering is a fundamental data processing task in relational database management systems. SQL and custom graph query languages such as Cypher offer this functionality by allowing users to specify the order via the ORDER BY clause. In many scenarios, the users also want to see the first $k$ results quickly (expressed by the LIMIT clause), but the value of $k$ is not predetermined as user queries are arriving in an online fashion. Recent work has made considerable progress in identifying optimal algorithms for ranked enumeration of join queries that do not contain any projections. In this paper, we initiate the study of the problem of enumerating results in ranked order for queries with projections. Our main result shows that for any acyclic query, it is possible to obtain a near-linear (in the size of the database) delay algorithm after only a linear time preprocessing step for two important ranking functions: sum and lexicographic ordering. For a practical subset of acyclic queries known as star queries, we show an even stronger result that allows a user to obtain a smooth tradeoff between faster answering time guarantees using more preprocessing time. Our results are also extensible to queries containing cycles and unions. We also perform a comprehensive experimental evaluation to demonstrate that our algorithms, which are simple to implement, improve up to three orders of magnitude in the running time over state-of-the-art algorithms implemented within open-source RDBMS and specialized graph databases.

Quality requirements deal with how well a product should perform the intended functionality, such as start-up time and learnability. Researchers argue they are important and at the same time studies indicate there are deficiencies in practice. Our goal is to review the state of evidence for quality requirements. We want to understand the empirical research on quality requirements topics as well as evaluations of quality requirements solutions. We used a hybrid method for our systematic literature review. We defined a start set based on two literature reviews combined with a keyword-based search from selected publication venues. We snowballed based on the start set. We screened 530 papers and included 84 papers in our review. Case study method is the most common (43), followed by surveys (15) and tests (13). We found no replication studies. The two most commonly studied themes are 1) Differentiating characteristics of quality requirements compared to other types of requirements, 2) the importance and prevalence of quality requirements. Quality models, QUPER, and the NFR method are evaluated in several studies, with positive indications. Goal modeling is the only modeling approach evaluated. However, all studies are small scale and long-term costs and impact are not studied. We conclude that more research is needed as empirical research on quality requirements is not increasing at the same rate as software engineering research in general. We see a gap between research and practice. The solutions proposed are usually evaluated in an academic context and surveys on quality requirements in industry indicate unsystematic handling of quality requirements.

Accelerometers enable an objective measurement of physical activity levels among groups of individuals in free-living environments, providing high-resolution detail about physical activity changes at different time scales. Current approaches used in the literature for analyzing such data typically employ summary measures such as total inactivity time or compositional metrics. However, at the conceptual level, these methods have the potential disadvantage of discarding important information from recorded data when calculating these summaries and metrics since these typically depend on cut-offs related to exercise intensity zones chosen subjectively or even arbitrarily. Furthermore, much of the data collected in these studies follow complex survey designs. Then, using specific estimation strategies adapted to a particular sampling mechanism is mandatory. The aim of this paper is two-fold. First, a new functional representation of a distributional nature accelerometer data is introduced to build a complete individualized profile of each subject's physical activity levels. Second, we extend two nonparametric functional regression models, kernel smoothing and kernel ridge regression, to handle survey data and obtain reliable conclusions about the influence of physical activity in the different analyses performed in the complex sampling design NHANES cohort and so, show representation advantages.

We study the problem of {\sl certification}: given queries to a function $f : \{0,1\}^n \to \{0,1\}$ with certificate complexity $\le k$ and an input $x^\star$, output a size-$k$ certificate for $f$'s value on $x^\star$. This abstractly models a central problem in explainable machine learning, where we think of $f$ as a blackbox model that we seek to explain the predictions of. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with $n$ queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with $O(k^8 \log n)$ queries, which comes close to matching the information-theoretic lower bound of $\Omega(k \log n)$. The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponential-in-$k$ lower bounds when $f$ is non-monotone, and when $f$ is monotone but the algorithm is only given random examples of $f$. These lower bounds show that assumptions on the structure of $f$ and query access to it are both necessary for the polynomial dependence on $k$ that we achieve.

We consider answering queries on data available through access methods, that provide lookup access to the tuples matching a given binding. Such interfaces are common on the Web; further, they often have bounds on how many results they can return, e.g., because of pagination or rate limits. We thus study result-bounded methods, which may return only a limited number of tuples. We study how to decide if a query is answerable using result-bounded methods, i.e., how to compute a plan that returns all answers to the query using the methods, assuming that the underlying data satisfies some integrity constraints. We first show how to reduce answerability to a query containment problem with constraints. Second, we show "schema simplification" theorems describing when and how result-bounded services can be used. Finally, we use these theorems to give decidability and complexity results about answerability for common constraint classes.

System-oriented IR evaluations are limited to rather abstract understandings of real user behavior. As a solution, simulating user interactions provides a cost-efficient way to support system-oriented experiments with more realistic directives when no interaction logs are available. While there are several user models for simulated clicks or result list interactions, very few attempts have been made towards query simulations, and it has not been investigated if these can reproduce properties of real queries. In this work, we validate simulated user query variants with the help of TREC test collections in reference to real user queries that were made for the corresponding topics. Besides, we introduce a simple yet effective method that gives better reproductions of real queries than the established methods. Our evaluation framework validates the simulations regarding the retrieval performance, reproducibility of topic score distributions, shared task utility, effort and effect, and query term similarity when compared with real user query variants. While the retrieval effectiveness and statistical properties of the topic score distributions as well as economic aspects are close to that of real queries, it is still challenging to simulate exact term matches and later query reformulations.

Software crowdsourcing platforms employ extrinsic rewards such as rating or ranking systems to motivate workers. Such rating systems are noisy and provide limited knowledge about workers' preferences and performance. To develop better understanding of worker reliability and trustworthiness in software crowdsourcing, this paper reports an empirical study conducted on more than one year's real-world data from TopCoder, one of the leading software crowdsourcing platforms. To do so, first, we create a bipartite network of active workers based on common task registrations. Then, we use the Clauset-Newman-Moore graph clustering algorithm to identify worker clusters in the network. Finally, we conduct an empirical evaluation to measure and analyze workers' behavior per identified community in the platform by workers' rating. More specifically, workers' behavior is analyzed based on their performances in terms of reliability, trustworthiness, and success; their preferences in terms of efficiency and elasticity; and strategies in terms of comfort, confidence, and deceitfulness. The main result of this study identified four communities of active workers: mixed-ranked, high-ranked, mid-ranked, and low-ranked. This study shows that the low-ranked community associates with the highest reliable workers with an average reliability of 25%, while the mixed-ranked community contains the most trustworthy workers with average trustworthiness of 16%. Such empirical evidence is beneficial to help exploring resourcing options while understanding the relations among unknown resources to improve task success.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Active learning from demonstration allows a robot to query a human for specific types of input to achieve efficient learning. Existing work has explored a variety of active query strategies; however, to our knowledge, none of these strategies directly minimize the performance risk of the policy the robot is learning. Utilizing recent advances in performance bounds for inverse reinforcement learning, we propose a risk-aware active inverse reinforcement learning algorithm that focuses active queries on areas of the state space with the potential for large generalization error. We show that risk-aware active learning outperforms standard active IRL approaches on gridworld, simulated driving, and table setting tasks, while also providing a performance-based stopping criterion that allows a robot to know when it has received enough demonstrations to safely perform a task.

北京阿比特科技有限公司