In computer vision, Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images. Traditional IDC methods often rely on specialist models, which restrict their applicability across varied contexts. This paper introduces the OneDiff model, a novel generalist approach that utilizes a robust vision-language model architecture, integrating a siamese image encoder with a Visual Delta Module. This innovative configuration allows for the precise detection and articulation of fine-grained differences between image pairs. OneDiff is trained through a dual-phase strategy, encompassing Coupled Sample Training and multi-task learning across a diverse array of data types, supported by our newly developed DiffCap Dataset. This dataset merges real-world and synthetic data, enhancing the training process and bolstering the model's robustness. Extensive testing on diverse IDC benchmarks, such as Spot-the-Diff, Image-Editing-Request, and Birds-to-Words, shows that OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability, achieving improvements of up to 97% CIDEr points in average. By setting a new benchmark in IDC, OneDiff paves the way for more versatile and effective applications in detecting and describing visual differences. The code, models, and data will be made publicly available.
Data augmentation has shown significant advancements in computer vision to improve model performance over the years, particularly in scenarios with limited and insufficient data. Currently, most studies focus on adjusting the image or its features to expand the size, quality, and variety of samples during training in various tasks including object detection. However, we argue that it is necessary to investigate bounding box transformations as a data augmentation technique rather than image-level transformations, especially in aerial imagery due to potentially inconsistent bounding box annotations. Hence, this letter presents a thorough investigation of bounding box transformation in terms of scaling, rotation, and translation for remote sensing object detection. We call this augmentation strategy NBBOX (Noise Injection into Bounding Box). We conduct extensive experiments on DOTA and DIOR-R, both well-known datasets that include a variety of rotated generic objects in aerial images. Experimental results show that our approach significantly improves remote sensing object detection without whistles and bells and it is more time-efficient than other state-of-the-art augmentation strategies.
Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.
In simultaneous localization and mapping, active loop closing (ALC) is an active vision problem that aims to visually guide a robot to maximize the chances of revisiting previously visited points, thereby resetting the drift errors accumulated in the incrementally built map during travel. However, current mainstream navigation strategies that leverage such incomplete maps as workspace prior knowledge often fail in modern long-term autonomy long-distance travel scenarios where map accumulation errors become significant. To address these limitations of map-based navigation, this paper is the first to explore mapless navigation in the embodied AI field, in particular, to utilize object-goal navigation (commonly abbreviated as ON, ObjNav, or OGN) techniques that efficiently explore target objects without using such a prior map. Specifically, in this work, we start from an off-the-shelf mapless ON planner, extend it to utilize a prior map, and further show that the performance in long-distance ALC (LD-ALC) can be maximized by minimizing ``ALC loss" and ``ON loss". This study highlights a simple and effective approach, called ALC-ON (ALCON), to accelerate the progress of challenging long-distance ALC technology by leveraging the growing frontier-guided, data-driven, and LLM-guided ON technologies.
Object detection in Unmanned Aerial Vehicle (UAV) images has emerged as a focal area of research, which presents two significant challenges: i) objects are typically small and dense within vast images; ii) computational resource constraints render most models unsuitable for real-time deployment. Current real-time object detectors are not optimized for UAV images, and complex methods designed for small object detection often lack real-time capabilities. To address these challenges, we propose a novel detector, RemDet (Reparameter efficient multiplication Detector). Our contributions are as follows: 1) Rethinking the challenges of existing detectors for small and dense UAV images, and proposing information loss as a design guideline for efficient models. 2) We introduce the ChannelC2f module to enhance small object detection performance, demonstrating that high-dimensional representations can effectively mitigate information loss. 3) We design the GatedFFN module to provide not only strong performance but also low latency, effectively addressing the challenges of real-time detection. Our research reveals that GatedFFN, through the use of multiplication, is more cost-effective than feed-forward networks for high-dimensional representation. 4) We propose the CED module, which combines the advantages of ViT and CNN downsampling to effectively reduce information loss. It specifically enhances context information for small and dense objects. Extensive experiments on large UAV datasets, Visdrone and UAVDT, validate the real-time efficiency and superior performance of our methods. On the challenging UAV dataset VisDrone, our methods not only provided state-of-the-art results, improving detection by more than 3.4%, but also achieve 110 FPS on a single 4090.
The emerging discipline of Computational Science is concerned with using computers to simulate or solve scientific problems. These problems span the natural, political, and social sciences. The discipline has exploded over the past decade due to the emergence of larger amounts of observational data and large-scale simulations that were previously unavailable or unfeasible. However, there are still significant challenges with managing the large amounts of data and simulations. The database management systems community has always been at the forefront of the development of the theory and practice of techniques for formalizing and actualizing systems that access or query large datasets. In this paper, we present EmpireDB, a vision for a data management system to accelerate computational sciences. In addition, we identify challenges and opportunities for the database community to further the fledgling field of computational sciences. Finally, we present preliminary evidence showing that the optimized components in EmpireDB could lead to improvements in performance compared to contemporary implementations.
We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
Fully Homomorphic Encryption (FHE) is known to be extremely computationally-intensive, application-specific accelerators emerged as a powerful solution to narrow the performance gap. Nonetheless, due to the increasing complexities in FHE schemes per se and multi-scheme FHE algorithm designs in end-to-end privacy-preserving tasks, existing FHE accelerators often face the challenges of low hardware utilization rates and insufficient memory bandwidth. In this work, we present \NAME, a layered near-memory computing hierarchy tailored for multi-scheme FHE acceleration. By closely inspecting the data flow across different FHE schemes, we propose a layered near-memory computing architecture with fine-grained functional unit design to significantly enhance the utilization rates of computational resources and memory bandwidth. The experimental results illustrate that APACHE outperforms state-of-the-art ASIC FHE accelerators by 10.63x to 35.47x over a variety of application benchmarks, e.g., Lola MNIST, HELR, VSP, and HE$^{3}$DB.
The effectiveness of large language models (LLMs) is closely tied to the design of prompts, making prompt optimization essential for enhancing their performance across a wide range of tasks. Many existing approaches to automating prompt engineering rely exclusively on textual feedback, refining prompts based solely on inference errors identified by large, computationally expensive LLMs. Unfortunately, smaller models struggle to generate high-quality feedback, resulting in complete dependence on large LLM judgment. Moreover, these methods fail to leverage more direct and finer-grained information, such as gradients, due to operating purely in text space. To this end, we introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning. By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models without the need for costly closed-source LLMs. This allows high-performance prompt optimization without dependence on massive LLMs, closing the gap between smaller models and the sophisticated reasoning often needed for prompt refinement. Extensive evaluations across diverse reasoning tasks including BBH, GSM8k, and FOLIO demonstrate that GReaTer consistently outperforms previous state-of-the-art prompt optimization methods, even those reliant on powerful LLMs. Additionally, GReaTer-optimized prompts frequently exhibit better transferability and, in some cases, boost task performance to levels comparable to or surpassing those achieved by larger language models, highlighting the effectiveness of prompt optimization guided by gradients over reasoning. Code of GReaTer is available at //github.com/psunlpgroup/GreaTer.
Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}, \alpha, \Sigma$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data will be made available at //fanegg.github.io/Feat2GS/.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.