The paper introduces a tree-based varying coefficient model (VCM) where the varying coefficients are modelled using the cyclic gradient boosting machine (CGBM) from Delong et al. (2023). Modelling the coefficient functions using a CGBM allows for dimension-wise early stopping and feature importance scores. The dimension-wise early stopping not only reduces the risk of dimension-specific overfitting, but also reveals differences in model complexity across dimensions. The use of feature importance scores allows for simple feature selection and easy model interpretation. The model is evaluated on the same simulated and real data examples as those used in Richman and W\"uthrich (2023), and the results show that it produces results in terms of out of sample loss that are comparable to those of their neural network-based VCM called LocalGLMnet.
Data depth functions have been intensively studied for normed vector spaces. However, a discussion on depth functions on data where one specific data structure cannot be presupposed is lacking. In this article, we introduce a notion of depth functions for data types that are not given in statistical standard data formats and therefore we do not have one specific data structure. We call such data in general non-standard data. To achieve this, we represent the data via formal concept analysis which leads to a unified data representation. Besides introducing depth functions for non-standard data using formal concept analysis, we give a systematic basis by introducing structural properties. Furthermore, we embed the generalised Tukey depth into our concept of data depth and analyse it using the introduced structural properties. Thus, this article provides the mathematical formalisation of centrality and outlyingness for non-standard data and therefore increases the spaces centrality is currently discussed. In particular, it gives a basis to define further depth functions and statistical inference methods for non-standard data.
Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.
While score-based generative models (SGMs) have achieved remarkable success in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process, which is interesting in its own right.
We propose a simple network of Hawkes processes as a cognitive model capable of learning to classify objects. Our learning algorithm, named HAN for Hawkes Aggregation of Neurons, is based on a local synaptic learning rule based on spiking probabilities at each output node. We were able to use local regret bounds to prove mathematically that the network is able to learn on average and even asymptotically under more restrictive assumptions.
Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.
Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.
This paper delves into a nonparametric estimation approach for the interaction function within diffusion-type particle system models. We introduce two estimation methods based upon an empirical risk minimization. Our study encompasses an analysis of the stochastic and approximation errors associated with both procedures, along with an examination of certain minimax lower bounds. In particular, we show that there is a natural metric under which the corresponding minimax estimation error of the interaction function converges to zero with parametric rate. This result is rather suprising given complexity of the underlying estimation problem and rather large classes of interaction functions for which the above parametric rate holds.
Inferring parameters of a latent variable model can be a daunting task when the conditional distribution of the latent variables given the observed ones is intractable. Variational approaches prove to be computationally efficient but, possibly, lack theoretical guarantees on the estimates, while sampling based solutions are quite the opposite. Starting from already available variational approximations, we define a first Monte Carlo EM algorithm to obtain maximum likelihood estimators, focusing on the Poisson log-normal model which provides a generic framework for the analysis of multivariate count data. We then extend this algorithm to the case of a composite likelihood in order to be able to handle higher dimensional count data.
The classical approach to analyzing extreme value data is the generalized Pareto distribution (GPD). When the GPD is used to explain a target variable with the large dimension of covariates, the shape and scale function of covariates included in GPD are sometimes modeled using the generalized additive models (GAM). In contrast to many results of application, there are no theoretical results on the hybrid technique of GAM and GPD, which motivates us to develop its asymptotic theory. We provide the rate of convergence of the estimator of shape and scale functions, as well as its local asymptotic normality.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.