An unconventional approach is applied to solve the one-dimensional Burgers' equation. It is based on spline polynomial interpolations and Hopf-Cole transformation. Taylor expansion is used to approximate the exponential term in the transformation, then the analytical solution of the simplified equation is discretized to form a numerical scheme, involving various special functions. The derived scheme is explicit and adaptable for parallel computing. However, some types of boundary condition cannot be specified straightforwardly. Three test cases were employed to examine its accuracy, stability, and parallel scalability. In the aspect of accuracy, the schemes employed cubic and quintic spline interpolation performs equally well, managing to reduce the $\ell_{1}$, $\ell_{2}$ and $\ell_{\infty}$ error norms down to the order of $10^{-4}$. Due to the transformation, their stability condition $\nu \Delta t/\Delta x^2 > 0.02$ includes the viscosity/diffusion coefficient $\nu$. From the condition, the schemes can run at a large time step size $\Delta t$ even when grid spacing $\Delta x$ is small. These characteristics suggest that the method is more suitable for operational use than for research purposes.
Using diffusion models to solve inverse problems is a growing field of research. Current methods assume the degradation to be known and provide impressive results in terms of restoration quality and diversity. In this work, we leverage the efficiency of those models to jointly estimate the restored image and unknown parameters of the degradation model such as blur kernel. In particular, we designed an algorithm based on the well-known Expectation-Minimization (EM) estimation method and diffusion models. Our method alternates between approximating the expected log-likelihood of the inverse problem using samples drawn from a diffusion model and a maximization step to estimate unknown model parameters. For the maximization step, we also introduce a novel blur kernel regularization based on a Plug \& Play denoiser. Diffusion models are long to run, thus we provide a fast version of our algorithm. Extensive experiments on blind image deblurring demonstrate the effectiveness of our method when compared to other state-of-the-art approaches.
We construct a bipartite generalization of Alon and Szegedy's nearly orthogonal vectors, thereby obtaining strong bounds for several extremal problems involving the Lov\'asz theta function, vector chromatic number, minimum semidefinite rank, nonnegative rank, and extension complexity of polytopes. In particular, we derive a couple of general lower bounds for the vector chromatic number which may be of independent interest.
Quadratic NURBS-based discretizations of the Galerkin method suffer from volumetric locking when applied to nearly-incompressible linear elasticity. Volumetric locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of normal stresses. Continuous-assumed-strain (CAS) elements have been recently introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we propose two generalizations of CAS elements (named CAS1 and CAS2 elements) to overcome volumetric locking in quadratic NURBS-based discretizations of nearly-incompressible linear elasticity. CAS1 elements linearly interpolate the strains at the knots in each direction for the term in the variational form involving the first Lam\'e parameter while CAS2 elements linearly interpolate the dilatational strains at the knots in each direction. For both element types, a displacement vector with C1 continuity across element boundaries results in assumed strains with C0 continuity across element boundaries. In addition, the implementation of the two locking treatments proposed in this work does not require any additional global or element matrix operations such as matrix inversions or matrix multiplications. The locking treatments are applied at the element level and the nonzero pattern of the global stiffness matrix is preserved. The numerical examples solved in this work show that CAS1 and CAS2 elements, using either two or three Gauss-Legrendre quadrature points per direction, are effective locking treatments since they not only result in more accurate displacements for coarse meshes, but also remove the spurious oscillations of normal stresses.
The notion of lacunary infinite numerical sequence is introduced. It is shown that for an arbitrary linear difference operator L with coefficients belonging to the set R of infinite numerical sequences, a criterion (i.e., a necessary and sufficient condition) for the infinite dimensionality of its space $V_L$ of solutions belonging to R is the presence of a lacunary sequence in $V_L$.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation. The shifted Laplacian multigrid method is a common preconditioning approach for the discretized acoustic Helmholtz equation. In some cases, like geophysical seismic imaging, one needs to consider the elastic Helmholtz equation, which is harder to solve: it is three times larger and contains a nullity-rich grad-div term. These properties make the solution of the equation more difficult for multigrid solvers. The key idea in this work is combining the shifted Laplacian with approaches for linear elasticity. We provide local Fourier analysis and numerical evidence that the convergence rate of our method is independent of the Poisson's ratio. Moreover, to better handle the problem size, we complement our multigrid method with the domain decomposition approach, which works in synergy with the local nature of the shifted Laplacian, so we enjoy the advantages of both methods without sacrificing performance. We demonstrate the efficiency of our solver on 2D and 3D problems in heterogeneous media.
Lyapunov functions play a vital role in the context of control theory for nonlinear dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional dynamical system which will be rewritten as an infinite-dimensional linear system using the Koopman or composition operator. Since this infinite-dimensional system has the structure of a weak-* continuous semigroup, in a specially weighted $\mathrm{L}^p$-space one can establish a connection between the solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank approximations with numerical methods. The potential benefit for numerical computations will be demonstrated with two short examples.
We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.
We introduce a relaxation for homomorphism problems that combines semidefinite programming with linear Diophantine equations, and propose a framework for the analysis of its power based on the spectral theory of association schemes. We use this framework to establish an unconditional lower bound against the semidefinite programming + linear equations model, by showing that the relaxation does not solve the approximate graph homomorphism problem and thus, in particular, the approximate graph colouring problem.
Weights are geometrical degrees of freedom that allow to generalise Lagrangian finite elements. They are defined through integrals over specific supports, well understood in terms of differential forms and integration, and lie within the framework of finite element exterior calculus. In this work we exploit this formalism with the target of identifying supports that are appealing for finite element approximation. To do so, we study the related parametric matrix-sequences, with the matrix order tending to infinity as the mesh size tends to zero. We describe the conditioning and the spectral global behavior in terms of the standard Toeplitz machinery and GLT theory, leading to the identification of the optimal choices for weights. Moreover, we propose and test ad hoc preconditioners, in dependence of the discretization parameters and in connection with conjugate gradient method. The model problem we consider is a onedimensional Laplacian, both with constant and non constant coefficients. Numerical visualizations and experimental tests are reported and critically discussed, demonstrating the advantages of weights-induced bases over standard Lagrangian ones. Open problems and future steps are listed in the conclusive section, especially regarding the multidimensional case.