亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we introduce the Qwen-VL series, a set of large-scale vision-language models (LVLMs) designed to perceive and understand both texts and images. Starting from the Qwen-LM as a foundation, we endow it with visual capacity by the meticulously designed (i) visual receptor, (ii) input-output interface, (iii) 3-stage training pipeline, and (iv) multilingual multimodal cleaned corpus. Beyond the conventional image description and question-answering, we implement the grounding and text-reading ability of Qwen-VLs by aligning image-caption-box tuples. The resulting models, including Qwen-VL and Qwen-VL-Chat, set new records for generalist models under similar model scales on a broad range of visual-centric benchmarks (e.g., image captioning, question answering, visual grounding) and different settings (e.g., zero-shot, few-shot). Moreover, on real-world dialog benchmarks, our instruction-tuned Qwen-VL-Chat also demonstrates superiority compared to existing vision-language chatbots. Code, demo and models are available at //github.com/QwenLM/Qwen-VL.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INTERACT · tuning · 點云 · MoDELS ·
2023 年 11 月 30 日

Recent advances in Large Multimodal Models (LMM) have made it possible for various applications in human-machine interactions. However, developing LMMs that can comprehend, reason, and plan in complex and diverse 3D environments remains a challenging topic, especially considering the demand for understanding permutation-invariant point cloud 3D representations of the 3D scene. Existing works seek help from multi-view images, and project 2D features to 3D space as 3D scene representations. This, however, leads to huge computational overhead and performance degradation. In this paper, we present LL3DA, a Large Language 3D Assistant that takes point cloud as direct input and respond to both textual-instructions and visual-prompts. This help LMMs better comprehend human interactions and further help to remove the ambiguities in cluttered 3D scenes. Experiments show that LL3DA achieves remarkable results, and surpasses various 3D vision-language models on both 3D Dense Captioning and 3D Question Answering.

In this work, we present a robust approach for joint part and object segmentation. Specifically, we reformulate object and part segmentation as an optimization problem and build a hierarchical feature representation including pixel, part, and object-level embeddings to solve it in a bottom-up clustering manner. Pixels are grouped into several clusters where the part-level embeddings serve as cluster centers. Afterwards, object masks are obtained by compositing the part proposals. This bottom-up interaction is shown to be effective in integrating information from lower semantic levels to higher semantic levels. Based on that, our novel approach Compositor produces part and object segmentation masks simultaneously while improving the mask quality. Compositor achieves state-of-the-art performance on PartImageNet and Pascal-Part by outperforming previous methods by around 0.9% and 1.3% on PartImageNet, 0.4% and 1.7% on Pascal-Part in terms of part and object mIoU and demonstrates better robustness against occlusion by around 4.4% and 7.1% on part and object respectively. Code will be available at //github.com/TACJu/Compositor.

In this paper, we investigate how to push the performance limits of serving Deep Neural Network (DNN) models on CPU-based servers. Specifically, we observe that while intra-operator parallelism across multiple threads is an effective way to reduce inference latency, it provides diminishing returns. Our primary insight is that instead of running a single instance of a model with all available threads on a server, running multiple instances each with smaller batch sizes and fewer threads for intra-op parallelism can provide lower inference latency. However, the right configuration is hard to determine manually since it is workload- (DNN model and batch size used by the serving system) and deployment-dependent (number of CPU cores on server). We present Packrat, a new serving system for online inference that given a model and batch size ($B$) algorithmically picks the optimal number of instances ($i$), the number of threads each should be allocated ($t$), and the batch sizes each should operate on ($b$) that minimizes latency. Packrat is built as an extension to TorchServe and supports online reconfigurations to avoid serving downtime. Averaged across a range of batch sizes, Packrat improves inference latency by 1.43$\times$ to 1.83$\times$ on a range of commonly used DNNs.

In this study, we are interested in imbuing robots with the capability of physically-grounded task planning. Recent advancements have shown that large language models (LLMs) possess extensive knowledge useful in robotic tasks, especially in reasoning and planning. However, LLMs are constrained by their lack of world grounding and dependence on external affordance models to perceive environmental information, which cannot jointly reason with LLMs. We argue that a task planner should be an inherently grounded, unified multimodal system. To this end, we introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning that leverages vision-language models (VLMs) to generate a sequence of actionable steps. ViLa directly integrates perceptual data into its reasoning and planning process, enabling a profound understanding of commonsense knowledge in the visual world, including spatial layouts and object attributes. It also supports flexible multimodal goal specification and naturally incorporates visual feedback. Our extensive evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners, highlighting its effectiveness in a wide array of open-world manipulation tasks.

In this work, we present a novel method to tackle the token generation challenge in Vision Language Models (VLMs) for video and image understanding, called LLaMA-VID. Current VLMs, while proficient in tasks like image captioning and visual question answering, face computational burdens when processing long videos due to the excessive visual tokens. LLaMA-VID addresses this issue by representing each frame with two distinct tokens, namely context token and content token. The context token encodes the overall image context based on user input, whereas the content token encapsulates visual cues in each frame. This dual-token strategy significantly reduces the overload of long videos while preserving critical information. Generally, LLaMA-VID empowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is proved to surpass previous methods on most of video- or image-based benchmarks. Code is available //github.com/dvlab-research/LLaMA-VID}{//github.com/dvlab-research/LLaMA-VID

Multi-modal large language models have demonstrated impressive performances on most vision-language tasks. However, the model generally lacks the understanding capabilities for specific domain data, particularly when it comes to interpreting chart figures. This is mainly due to the lack of relevant multi-modal instruction tuning datasets. In this article, we create a high-quality instruction-tuning dataset leveraging GPT-4. We develop a multi-step data generation process in which different steps are responsible for generating tabular data, creating chart figures, and designing instruction tuning data separately. Our method's flexibility enables us to generate diverse, high-quality instruction-tuning data consistently and efficiently while maintaining a low resource expenditure. Additionally, it allows us to incorporate a wider variety of chart and task types not yet featured in existing datasets. Next, we introduce ChartLlama, a multi-modal large language model that we've trained using our created dataset. ChartLlama outperforms all prior methods in ChartQA, Chart-to-text, and Chart-extraction evaluation benchmarks. Additionally, ChartLlama significantly improves upon the baseline in our specially compiled chart dataset, which includes new chart and task types. The results of ChartLlama confirm the value and huge potential of our proposed data generation method in enhancing chart comprehension.

With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.

Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.

北京阿比特科技有限公司