亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current Deep Neural Networks are vulnerable to adversarial examples, which alter their predictions by adding carefully crafted noise. Since human eyes are robust to such inputs, it is possible that the vulnerability stems from the standard way of processing inputs in one shot by processing every pixel with the same importance. In contrast, neuroscience suggests that the human vision system can differentiate salient features by (1) switching between multiple fixation points (saccades) and (2) processing the surrounding with a non-uniform external resolution (foveation). In this work, we advocate that the integration of such active vision mechanisms into current deep learning systems can offer robustness benefits. Specifically, we empirically demonstrate the inherent robustness of two active vision methods - GFNet and FALcon - under a black box threat model. By learning and inferencing based on downsampled glimpses obtained from multiple distinct fixation points within an input, we show that these active methods achieve (2-3) times greater robustness compared to a standard passive convolutional network under state-of-the-art adversarial attacks. More importantly, we provide illustrative and interpretable visualization analysis that demonstrates how performing inference from distinct fixation points makes active vision methods less vulnerable to malicious inputs.

相關內容

Recent work shown the capability of Large Language Models (LLMs) to solve tasks related to Knowledge Graphs, such as Knowledge Graph Completion, even in Zero- or Few-Shot paradigms. However, they are known to hallucinate answers, or output results in a non-deterministic manner, thus leading to wrongly reasoned responses, even if they satisfy the user's demands. To highlight opportunities and challenges in knowledge graphs-related tasks, we experiment with two distinguished LLMs, namely Mixtral-8x7B-Instruct-v0.1, and gpt-3.5-turbo-0125, on Knowledge Graph Completion for static knowledge graphs, using prompts constructed following the TELeR taxonomy, in Zero- and One-Shot contexts, on a Task-Oriented Dialogue system use case. When evaluated using both strict and flexible metrics measurement manners, our results show that LLMs could be fit for such a task if prompts encapsulate sufficient information and relevant examples.

Randomized Controlled Trials (RCTs) are pivotal in generating internally valid estimates with minimal assumptions, serving as a cornerstone for researchers dedicated to advancing causal inference methods. However, extending these findings beyond the experimental cohort to achieve externally valid estimates is crucial for broader scientific inquiry. This paper delves into the forefront of addressing these external validity challenges, encapsulating the essence of a multidisciplinary workshop held at the Institute for Computational and Experimental Research in Mathematics (ICERM), Brown University, in Fall 2023. The workshop congregated experts from diverse fields including social science, medicine, public health, statistics, computer science, and education, to tackle the unique obstacles each discipline faces in extrapolating experimental findings. Our study presents three key contributions: we integrate ongoing efforts, highlighting methodological synergies across fields; provide an exhaustive review of generalizability and transportability based on the workshop's discourse; and identify persistent hurdles while suggesting avenues for future research. By doing so, this paper aims to enhance the collective understanding of the generalizability and transportability of causal effects, fostering cross-disciplinary collaboration and offering valuable insights for researchers working on refining and applying causal inference methods.

Recent advancements in Large Language Models (LLMs) and their utilization in code generation tasks have significantly reshaped the field of software development. Despite the remarkable efficacy of code completion solutions in mainstream programming languages, their performance lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code completion tool, and proposes a set of task-specific optimizations leveraging Meta's open-source model Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this research is used to perform a series of experiments through which the impact of various prompt-engineering and fine-tuning techniques on the Code Llama model's performance is analyzed. The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution's underlying Codex model. Additionally, this research proposes an enhancement to a widely used code infilling training technique, addressing the issue of underperformance when the model is prompted with context sizes smaller than those used during training.

Recent progress in Neural Causal Models (NCMs) showcased how identification and partial identification of causal effects can be automatically carried out via training of neural generative models that respect the constraints encoded in a given causal graph [Xia et al. 2022, Balazadeh et al. 2022]. However, formal consistency of these methods has only been proven for the case of discrete variables or only for linear causal models. In this work, we prove consistency of partial identification via NCMs in a general setting with both continuous and categorical variables. Further, our results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity as well as the importance of applying Lipschitz regularization in the training phase. In particular, we provide a counterexample showing that without Lipschitz regularization the NCM may not be asymptotically consistent. Our results are enabled by new results on the approximability of structural causal models via neural generative models, together with an analysis of the sample complexity of the resulting architectures and how that translates into an error in the constrained optimization problem that defines the partial identification bounds.

Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.

Since the development of Large Language Models (LLMs) has achieved remarkable success, understanding and controlling their internal complex mechanisms has become an urgent problem. Recent research has attempted to interpret their behaviors through the lens of inner representation. However, developing practical and efficient methods for applying these representations for general and flexible model editing remains challenging. In this work, we explore how to use representation engineering methods to guide the editing of LLMs by deploying a representation sensor as an oracle. We first identify the importance of a robust and reliable sensor during editing, then propose an Adversarial Representation Engineering (ARE) framework to provide a unified and interpretable approach for conceptual model editing without compromising baseline performance. Experiments on multiple model editing paradigms demonstrate the effectiveness of ARE in various settings. Code and data are available at //github.com/Zhang-Yihao/Adversarial-Representation-Engineering.

Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.

In this paper we present Large Language Model Assisted Retrieval Model Ranking (LARMOR), an effective unsupervised approach that leverages LLMs for selecting which dense retriever to use on a test corpus (target). Dense retriever selection is crucial for many IR applications that rely on using dense retrievers trained on public corpora to encode or search a new, private target corpus. This is because when confronted with domain shift, where the downstream corpora, domains, or tasks of the target corpus differ from the domain/task the dense retriever was trained on, its performance often drops. Furthermore, when the target corpus is unlabeled, e.g., in a zero-shot scenario, the direct evaluation of the model on the target corpus becomes unfeasible. Unsupervised selection of the most effective pre-trained dense retriever becomes then a crucial challenge. Current methods for dense retriever selection are insufficient in handling scenarios with domain shift. Our proposed solution leverages LLMs to generate pseudo-relevant queries, labels and reference lists based on a set of documents sampled from the target corpus. Dense retrievers are then ranked based on their effectiveness on these generated pseudo-relevant signals. Notably, our method is the first approach that relies solely on the target corpus, eliminating the need for both training corpora and test labels. To evaluate the effectiveness of our method, we construct a large pool of state-of-the-art dense retrievers. The proposed approach outperforms existing baselines with respect to both dense retriever selection and ranking. We make our code and results publicly available at //github.com/ielab/larmor/.

The Linearized Laplace Approximation (LLA) has been recently used to perform uncertainty estimation on the predictions of pre-trained deep neural networks (DNNs). However, its widespread application is hindered by significant computational costs, particularly in scenarios with a large number of training points or DNN parameters. Consequently, additional approximations of LLA, such as Kronecker-factored or diagonal approximate GGN matrices, are utilized, potentially compromising the model's performance. To address these challenges, we propose a new method for approximating LLA using a variational sparse Gaussian Process (GP). Our method is based on the dual RKHS formulation of GPs and retains, as the predictive mean, the output of the original DNN. Furthermore, it allows for efficient stochastic optimization, which results in sub-linear training time in the size of the training dataset. Specifically, its training cost is independent of the number of training points. We compare our proposed method against accelerated LLA (ELLA), which relies on the Nystr\"om approximation, as well as other LLA variants employing the sample-then-optimize principle. Experimental results, both on regression and classification datasets, show that our method outperforms these already existing efficient variants of LLA, both in terms of the quality of the predictive distribution and in terms of total computational time.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

北京阿比特科技有限公司