亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that a maintenance problem on frequency-constrained maintenance jobs with a hierarchical structure is integer-factorization hard. This result holds even on simple systems with just two components to maintain. As a corollary, we provide a first hardness result for Levi et al.'s modular maintenance scheduling problem (Naval Research Logistics 61, 472-488, 2014).

相關內容

The possibility of unmeasured confounding is one of the main limitations for causal inference from observational studies. There are different methods for partially empirically assessing the plausibility of unconfoundedness. However, most currently available methods require (at least partial) assumptions about the confounding structure, which may be difficult to know in practice. In this paper we describe a simple strategy for empirically assessing the plausibility of conditional unconfoundedness (i.e., whether the candidate set of covariates suffices for confounding adjustment) which does not require any assumptions about the confounding structure, requiring instead assumptions related to temporal ordering between covariates, exposure and outcome (which can be guaranteed by design), measurement error and selection into the study. The proposed method essentially relies on testing the association between a subset of covariates (those associated with the exposure given all other covariates) and the outcome conditional on the remaining covariates and the exposure. We describe the assumptions underlying the method, provide proofs, use simulations to corroborate the theory and illustrate the method with an applied example assessing the causal effect of length-for-age measured in childhood and intelligence quotient measured in adulthood using data from the 1982 Pelotas (Brazil) birth cohort. We also discuss the implications of measurement error and some important limitations.

Retinopathy of prematurity (ROP) is a severe condition affecting premature infants, leading to abnormal retinal blood vessel growth, retinal detachment, and potential blindness. While semi-automated systems have been used in the past to diagnose ROP-related plus disease by quantifying retinal vessel features, traditional machine learning (ML) models face challenges like accuracy and overfitting. Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs), have significantly improved ROP detection and classification. The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential. This research comprehensively examines the contemporary progress and challenges associated with using retinal imaging and artificial intelligence (AI) to detect ROP, offering valuable insights that can guide further investigation in this domain. Based on 89 original studies in this field (out of 1487 studies that were comprehensively reviewed), we concluded that traditional methods for ROP diagnosis suffer from subjectivity and manual analysis, leading to inconsistent clinical decisions. AI holds great promise for improving ROP management. This review explores AI's potential in ROP detection, classification, diagnosis, and prognosis.

The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.

A cyclic proof system is a proof system whose proof figure is a tree with cycles. The cut-elimination in a proof system is fundamental. It is conjectured that the cut-elimination in the cyclic proof system for first-order logic with inductive definitions does not hold. This paper shows that the conjecture is correct by giving a sequent not provable without the cut rule but provable in the cyclic proof system.

Quantization for a Borel probability measure refers to the idea of estimating a given probability by a discrete probability with support containing a finite number of elements. In this paper, we have considered a Borel probability measure $P$ on $\mathbb R^2$, which has support a nonuniform stretched Sierpi\'{n}ski triangle generated by a set of three contractive similarity mappings on $\mathbb R^2$. For this probability measure, we investigate the optimal sets of $n$-means and the $n$th quantization errors for all positive integers $n$.

Often the question arises whether $Y$ can be predicted based on $X$ using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of $(X_i, Y_j)$. It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.

Inner products of neural network feature maps arises in a wide variety of machine learning frameworks as a method of modeling relations between inputs. This work studies the approximation properties of inner products of neural networks. It is shown that the inner product of a multi-layer perceptron with itself is a universal approximator for symmetric positive-definite relation functions. In the case of asymmetric relation functions, it is shown that the inner product of two different multi-layer perceptrons is a universal approximator. In both cases, a bound is obtained on the number of neurons required to achieve a given accuracy of approximation. In the symmetric case, the function class can be identified with kernels of reproducing kernel Hilbert spaces, whereas in the asymmetric case the function class can be identified with kernels of reproducing kernel Banach spaces. Finally, these approximation results are applied to analyzing the attention mechanism underlying Transformers, showing that any retrieval mechanism defined by an abstract preorder can be approximated by attention through its inner product relations. This result uses the Debreu representation theorem in economics to represent preference relations in terms of utility functions.

We show that a previously introduced key exchange based on a congruence-simple semiring action is not secure by providing an attack that reveals the shared key from the distributed public information for any of such semirings

We investigate pointwise estimation of the function-valued velocity field of a second-order linear SPDE. Based on multiple spatially localised measurements, we construct a weighted augmented MLE and study its convergence properties as the spatial resolution of the observations tends to zero and the number of measurements increases. By imposing H\"older smoothness conditions, we recover the pointwise convergence rate known to be minimax-optimal in the linear regression framework. The optimality of the rate in the current setting is verified by adapting the lower bound ansatz based on the RKHS of local measurements to the nonparametric situation.

We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.

北京阿比特科技有限公司