亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(\vec{x}) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and Tur\'an (2022), who studied bounds on the number of anchors required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the more expressive model of $k$-nearest neighbors. We initiate the study of the representational power of nearest and $k$-nearest neighbors through Boolean circuit complexity. To this end, we establish a connection between Boolean functions with polynomial nearest neighbor complexity and those that can be efficiently represented by classes based on linear inequalities -- min-plus polynomial threshold functions -- previously studied in relation to threshold circuits. This extends an observation of Hajnal et al. (2022). We obtain exponential lower bounds on the $k$-nearest neighbors complexity of explicit $n$-variate functions, assuming $k \leq n^{1-\epsilon}$. Previously, no superlinear lower bound was known for any $k>1$. Next, we further extend the connection between nearest neighbor representations and circuits to the $k$-nearest neighbors case. As a result, we show that proving superpolynomial lower bounds for the $k$-nearest neighbors complexity of an explicit function for arbitrary $k$ would require a breakthrough in circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and $k$-nearest neighbors complexity (for unrestricted $k$) of an explicit function. These results address questions raised by Hajnal et al. (2022) of proving strong lower bounds for $k$-nearest neighbors and understanding the role of the parameter $k$. Finally, we devise new bounds on the nearest neighbor complexity for several explicit functions.

相關內容

Given a simple $n$-vertex, $m$-edge graph $G$ undergoing edge insertions and deletions, we give two new fully dynamic algorithms for exactly maintaining the edge connectivity of $G$ in $\tilde{O}(n)$ worst-case update time and $\tilde{O}(m^{1-1/31})$ amortized update time, respectively. Prior to our work, all dynamic edge connectivity algorithms either assumed bounded edge connectivity, guaranteed approximate solutions, or were restricted to edge insertions only. Our results provide an affirmative answer to an open question posed by Thorup [Combinatorica'07].

We study a general factor analysis framework where the $n$-by-$p$ data matrix is assumed to follow a general exponential family distribution entry-wise. While this model framework has been proposed before, we here further relax its distributional assumption by using a quasi-likelihood setup. By parameterizing the mean-variance relationship on data entries, we additionally introduce a dispersion parameter and entry-wise weights to model large variations and missing values. The resulting model is thus not only robust to distribution misspecification but also more flexible and able to capture non-Gaussian covariance structures of the data matrix. Our main focus is on efficient computational approaches to perform the factor analysis. Previous modeling frameworks rely on simulated maximum likelihood (SML) to find the factorization solution, but this method was shown to lead to asymptotic bias when the simulated sample size grows slower than the square root of the sample size $n$, eliminating its practical application for data matrices with large $n$. Borrowing from expectation-maximization (EM) and stochastic gradient descent (SGD), we investigate three estimation procedures based on iterative factorization updates. Our proposed solution does not show asymptotic biases, and scales even better for large matrix factorizations with error $O(1/p)$. To support our findings, we conduct simulation experiments and discuss its application in three case studies.

Computing the rotation distance between two binary trees with $n$ internal nodes efficiently (in $poly(n)$ time) is a long standing open question in the study of height balancing in tree data structures. In this paper, we initiate the study of this problem bounding the rank of the trees given at the input (defined by Ehrenfeucht and Haussler (1989) in the context of decision trees). We define the rank-bounded rotation distance between two given binary trees $T_1$ and $T_2$ (with $n$ internal nodes) of rank at most $r$, denoted by $d_r(T_1,T_2)$, as the length of the shortest sequence of rotations that transforms $T_1$ to $T_2$ with the restriction that the intermediate trees must be of rank at most $r$. We show that the rotation distance problem reduces in polynomial time to the rank bounded rotation distance problem. This motivates the study of the problem in the combinatorial and algorithmic frontiers. Observing that trees with rank $1$ coincide exactly with skew trees (binary trees where every internal node has at least one leaf as a child), we show the following results in this frontier : We present an $O(n^2)$ time algorithm for computing $d_1(T_1,T_2)$. That is, when the given trees are skew trees (we call this variant as skew rotation distance problem) - where the intermediate trees are restricted to be skew as well. In particular, our techniques imply that for any two skew trees $d(T_1,T_2) \le n^2$. We show the following upper bound : for any two trees $T_1$ and $T_2$ of rank at most $r_1$ and $r_2$ respectively, we have that: $d_r(T_1,T_2) \le n^2 (1+(2n+1)(r_1+r_2-2))$ where $r = max\{r_1,r_2\}$. This bound is asymptotically tight for $r=1$. En route our proof of the above theorems, we associate binary trees to permutations and bivariate polynomials, and prove several characterizations in the case of skew trees.

For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

Consider a matroid where all elements are labeled with an element in $\mathbb{Z}$. We are interested in finding a base where the sum of the labels is congruent to $g \pmod m$. We show that this problem can be solved in $\tilde{O}(2^{4m} n r^{5/6})$ time for a matroid with $n$ elements and rank $r$, when $m$ is either the product of two primes or a prime power. The algorithm can be generalized to all moduli and, in fact, to all abelian groups if a classic additive combinatorics conjecture by Schrijver and Seymour holds true. We also discuss the optimization version of the problem.

Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call coorbit filter banks, which unify previous notions of max filter banks and finite coorbit filter banks. When $V=\mathbb R^d$ and $G$ is compact, we establish that a suitable coorbit filter bank is injective and locally lower Lipschitz in the quotient metric at orbits of maximal dimension. Furthermore, when the orbit space $\mathbb S^{d-1}/G$ is a Riemannian orbifold, we show that a suitable coorbit filter bank is bi-Lipschitz in the quotient metric.

We show that any bounded integral function $f : A \times B \mapsto \{0,1, \dots, \Delta\}$ with rank $r$ has deterministic communication complexity $\Delta^{O(\Delta)} \cdot \sqrt{r} \cdot \log r$, where the rank of $f$ is defined to be the rank of the $A \times B$ matrix whose entries are the function values. As a corollary, we show that any $n$-dimensional polytope that admits a slack matrix with entries from $\{0,1,\dots,\Delta\}$ has extension complexity at most $\exp(\Delta^{O(\Delta)} \cdot \sqrt{n} \cdot \log n)$.

Given an intractable distribution $p$, the problem of variational inference (VI) is to compute the best approximation $q$ from some more tractable family $\mathcal{Q}$. Most commonly the approximation is found by minimizing a Kullback-Leibler (KL) divergence. However, there exist other valid choices of divergences, and when $\mathcal{Q}$ does not contain~$p$, each divergence champions a different solution. We analyze how the choice of divergence affects the outcome of VI when a Gaussian with a dense covariance matrix is approximated by a Gaussian with a diagonal covariance matrix. In this setting we show that different divergences can be \textit{ordered} by the amount that their variational approximations misestimate various measures of uncertainty, such as the variance, precision, and entropy. We also derive an impossibility theorem showing that no two of these measures can be simultaneously matched by a factorized approximation; hence, the choice of divergence informs which measure, if any, is correctly estimated. Our analysis covers the KL divergence, the R\'enyi divergences, and a score-based divergence that compares $\nabla\log p$ and $\nabla\log q$. We empirically evaluate whether these orderings hold when VI is used to approximate non-Gaussian distributions.

A $\textit{resolving set}$ $R$ in a graph $G$ is a set of vertices such that every vertex of $G$ is uniquely identified by its distances to the vertices of $R$. Introduced in the 1970s, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the $\textit{temporal distance}$ from $u$ to $v$ is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving $u$ reaches $v$, i.e., the first time-step at which $v$ could receive a message broadcast from $u$. A $\textit{temporal resolving set}$ of a temporal graph $\mathcal{G}$ is a subset $R$ of its vertices such that every vertex of $\mathcal{G}$ is uniquely identified by its temporal distances from vertices of $R$. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.

We study the sample complexity of learning an $\varepsilon$-optimal policy in an average-reward Markov decision process (MDP) under a generative model. We establish the complexity bound $\widetilde{O}\left(SA\frac{H}{\varepsilon^2} \right)$, where $H$ is the span of the bias function of the optimal policy and $SA$ is the cardinality of the state-action space. Our result is the first that is minimax optimal (up to log factors) in all parameters $S,A,H$ and $\varepsilon$, improving on existing work that either assumes uniformly bounded mixing times for all policies or has suboptimal dependence on the parameters. Our result is based on reducing the average-reward MDP to a discounted MDP. To establish the optimality of this reduction, we develop improved bounds for $\gamma$-discounted MDPs, showing that $\widetilde{O}\left(SA\frac{H}{(1-\gamma)^2\varepsilon^2} \right)$ samples suffice to learn a $\varepsilon$-optimal policy in weakly communicating MDPs under the regime that $\gamma \geq 1 - \frac{1}{H}$, circumventing the well-known lower bound of $\widetilde{\Omega}\left(SA\frac{1}{(1-\gamma)^3\varepsilon^2} \right)$ for general $\gamma$-discounted MDPs. Our analysis develops upper bounds on certain instance-dependent variance parameters in terms of the span parameter. These bounds are tighter than those based on the mixing time or diameter of the MDP and may be of broader use.

北京阿比特科技有限公司