亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in deep learning have led to increased interest in solving high-efficiency end-to-end transmission problems using methods that employ the nonlinear property of neural networks. These methods, we call semantic coding, extract semantic features of the source signal across space and time, and design source-channel coding methods to transmit these features over wireless channels. Rapid progress has led to numerous research papers, but a consolidation of the discovered knowledge has not yet emerged. In this article, we gather ideas to categorize the expansive aspects on semantic coding as two paradigms, i.e., explicit and implicit semantic coding. We first focus on those two paradigms of semantic coding by identifying their common and different components in building semantic communication systems. We then focus on the applications of semantic coding to different transmission tasks. Our article highlights the improved quality, flexibility, and capability brought by semantic coded transmission. Finally, we point out future directions.

相關內容

Wikipedia, in its role as the world's largest encyclopedia, serves a broad range of information needs. Although previous studies have noted that Wikipedia users' information needs vary throughout the day, there is to date no large-scale, quantitative study of the underlying dynamics. The present paper fills this gap by investigating temporal regularities in daily consumption patterns in a large-scale analysis of billions of timezone-corrected page requests mined from English Wikipedia's server logs, with the goal of investigating how context and time relate to the kind of information consumed. First, we show that even after removing the global pattern of day-night alternation, the consumption habits of individual articles maintain strong diurnal regularities. Then, we characterize the prototypical shapes of consumption patterns, finding a particularly strong distinction between articles preferred during the evening/night and articles preferred during working hours. Finally, we investigate topical and contextual correlates of Wikipedia articles' access rhythms, finding that article topic, reader country, and access device (mobile vs. desktop) are all important predictors of daily attention patterns. These findings shed new light on how humans seek information on the Web by focusing on Wikipedia as one of the largest open platforms for knowledge and learning, emphasizing Wikipedia's role as a rich knowledge base that fulfills information needs spread throughout the day, with implications for understanding information seeking across the globe and for designing appropriate information systems.

Pre-trained language models (PLMs) have accomplished impressive achievements in abstractive single-document summarization (SDS). However, such benefits may not be readily extended to muti-document summarization (MDS), where the interactions among documents are more complex. Previous works either design new architectures or new pre-training objectives for MDS, or apply PLMs to MDS without considering the complex document interactions. While the former does not make full use of previous pre-training efforts and may not generalize well across multiple domains, the latter cannot fully attend to the intricate relationships unique to MDS tasks. In this paper, we enforce hierarchy on both the encoder and decoder and seek to make better use of a PLM to facilitate multi-document interactions for the MDS task. We test our design on 10 MDS datasets across a wide range of domains. Extensive experiments show that our proposed method can achieve consistent improvements on all these datasets, outperforming the previous best models, and even achieving better or competitive results as compared to some models with additional MDS pre-training or larger model parameters.

Languages are dynamic entities, where the meanings associated with words constantly change with time. Detecting the semantic variation of words is an important task for various NLP applications that must make time-sensitive predictions. Existing work on semantic variation prediction have predominantly focused on comparing some form of an averaged contextualised representation of a target word computed from a given corpus. However, some of the previously associated meanings of a target word can become obsolete over time (e.g. meaning of gay as happy), while novel usages of existing words are observed (e.g. meaning of cell as a mobile phone). We argue that mean representations alone cannot accurately capture such semantic variations and propose a method that uses the entire cohort of the contextualised embeddings of the target word, which we refer to as the sibling distribution. Experimental results on SemEval-2020 Task 1 benchmark dataset for semantic variation prediction show that our method outperforms prior work that consider only the mean embeddings, and is comparable to the current state-of-the-art. Moreover, a qualitative analysis shows that our method detects important semantic changes in words that are not captured by the existing methods. Source code is available at //github.com/a1da4/svp-gauss .

As social issues related to gender bias attract closer scrutiny, accurate tools to determine the gender profile of large groups become essential. When explicit data is unavailable, gender is often inferred from names. Current methods follow a strategy whereby individuals of the group, one by one, are assigned a gender label or probability based on gender-name correlations observed in the population at large. We show that this strategy is logically inconsistent and has practical shortcomings, the most notable of which is the systematic underestimation of gender bias. We introduce a global inference strategy that estimates gender composition according to the context of the full list of names. The tool suffers from no intrinsic methodological effects, is robust against errors, easily implemented, and computationally light.

Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.

Temporal sentence grounding in videos (TSGV), a.k.a., natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

In recent years, disinformation including fake news, has became a global phenomenon due to its explosive growth, particularly on social media. The wide spread of disinformation and fake news can cause detrimental societal effects. Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation. The goal of this chapter is to pave the way for appreciating the challenges and advancements via: (1) introducing the types of information disorder on social media and examine their differences and connections; (2) describing important and emerging tasks to combat disinformation for characterization, detection and attribution; and (3) discussing a weak supervision approach to detect disinformation with limited labeled data. We then provide an overview of the chapters in this book that represent the recent advancements in three related parts: (1) user engagements in the dissemination of information disorder; (2) techniques on detecting and mitigating disinformation; and (3) trending issues such as ethics, blockchain, clickbaits, etc. We hope this book to be a convenient entry point for researchers, practitioners, and students to understand the problems and challenges, learn state-of-the-art solutions for their specific needs, and quickly identify new research problems in their domains.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司