亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The NLP community has seen substantial recent interest in grounding to facilitate interaction between language technologies and the world. However, as a community, we use the term broadly to reference any linking of text to data or non-textual modality. In contrast, Cognitive Science more formally defines "grounding" as the process of establishing what mutual information is required for successful communication between two interlocutors -- a definition which might implicitly capture the NLP usage but differs in intent and scope. We investigate the gap between these definitions and seek answers to the following questions: (1) What aspects of grounding are missing from NLP tasks? Here we present the dimensions of coordination, purviews and constraints. (2) How is the term "grounding" used in the current research? We study the trends in datasets, domains, and tasks introduced in recent NLP conferences. And finally, (3) How to advance our current definition to bridge the gap with Cognitive Science? We present ways to both create new tasks or repurpose existing ones to make advancements towards achieving a more complete sense of grounding.

相關內容

NLP:自然(ran)語言(yan)處理

Alongside huge volumes of research on deep learning models in NLP in the recent years, there has been also much work on benchmark datasets needed to track modeling progress. Question answering and reading comprehension have been particularly prolific in this regard, with over 80 new datasets appearing in the past two years. This study is the largest survey of the field to date. We provide an overview of the various formats and domains of the current resources, highlighting the current lacunae for future work. We further discuss the current classifications of ``reasoning types" in question answering and propose a new taxonomy. We also discuss the implications of over-focusing on English, and survey the current monolingual resources for other languages and multilingual resources. The study is aimed at both practitioners looking for pointers to the wealth of existing data, and at researchers working on new resources.

NLP is deeply intertwined with the formal study of language, both conceptually and historically. Arguably, this connection goes all the way back to Chomsky's Syntactic Structures in 1957. It also still holds true today, with a strand of recent works building formal analysis of modern neural networks methods in terms of formal languages. In this document, I aim to explain background about formal languages as they relate to this recent work. I will by necessity ignore large parts of the rich history of this field, instead focusing on concepts connecting to modern deep learning-based NLP.

Seemingly simple natural language requests to a robot are generally underspecified, for example "Can you bring me the wireless mouse?" When viewing mice on the shelf, the number of buttons or presence of a wire may not be visible from certain angles or positions. Flat images of candidate mice may not provide the discriminative information needed for "wireless". The world, and objects in it, are not flat images but complex 3D shapes. If a human requests an object based on any of its basic properties, such as color, shape, or texture, robots should perform the necessary exploration to accomplish the task. In particular, while substantial effort and progress has been made on understanding explicitly visual attributes like color and category, comparatively little progress has been made on understanding language about shapes and contours. In this work, we introduce a novel reasoning task that targets both visual and non-visual language about 3D objects. Our new benchmark, ShapeNet Annotated with Referring Expressions (SNARE), requires a model to choose which of two objects is being referenced by a natural language description. We introduce several CLIP-based models for distinguishing objects and demonstrate that while recent advances in jointly modeling vision and language are useful for robotic language understanding, it is still the case that these models are weaker at understanding the 3D nature of objects -- properties which play a key role in manipulation. In particular, we find that adding view estimation to language grounding models improves accuracy on both SNARE and when identifying objects referred to in language on a robot platform.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

There are thousands of actively spoken languages on Earth, but a single visual world. Grounding in this visual world has the potential to bridge the gap between all these languages. Our goal is to use visual grounding to improve unsupervised word mapping between languages. The key idea is to establish a common visual representation between two languages by learning embeddings from unpaired instructional videos narrated in the native language. Given this shared embedding we demonstrate that (i) we can map words between the languages, particularly the 'visual' words; (ii) that the shared embedding provides a good initialization for existing unsupervised text-based word translation techniques, forming the basis for our proposed hybrid visual-text mapping algorithm, MUVE; and (iii) our approach achieves superior performance by addressing the shortcomings of text-based methods -- it is more robust, handles datasets with less commonality, and is applicable to low-resource languages. We apply these methods to translate words from English to French, Korean, and Japanese -- all without any parallel corpora and simply by watching many videos of people speaking while doing things.

Language is central to human intelligence. We review recent breakthroughs in machine language processing and consider what remains to be achieved. Recent approaches rely on domain general principles of learning and representation captured in artificial neural networks. Most current models, however, focus too closely on language itself. In humans, language is part of a larger system for acquiring, representing, and communicating about objects and situations in the physical and social world, and future machine language models should emulate such a system. We describe existing machine models linking language to concrete situations, and point toward extensions to address more abstract cases. Human language processing exploits complementary learning systems, including a deep neural network-like learning system that learns gradually as machine systems do, as well as a fast-learning system that supports learning new information quickly. Adding such a system to machine language models will be an important further step toward truly human-like language understanding.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

In this work, we present novel methods to adapt visual QA models for community QA tasks of practical significance - automated question category classification and finding experts for question answering - on questions containing both text and image. To the best of our knowledge, this is the first work to tackle the multimodality challenge in CQA, and is an enabling step towards basic question-answering on image-based CQA. First, we analyze the differences between visual QA and community QA datasets, discussing the limitations of applying VQA models directly to CQA tasks, and then we propose novel augmentations to VQA-based models to best address those limitations. Our model, with the augmentations of an image-text combination method tailored for CQA and use of auxiliary tasks for learning better grounding features, significantly outperforms the text-only and VQA model baselines for both tasks on real-world CQA data from Yahoo! Chiebukuro, a Japanese counterpart of Yahoo! Answers.

北京阿比特科技有限公司