亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The design of functional materials with desired properties is essential in driving technological advances in areas like energy storage, catalysis, and carbon capture. Generative models provide a new paradigm for materials design by directly generating entirely novel materials given desired property constraints. Despite recent progress, current generative models have low success rate in proposing stable crystals, or can only satisfy a very limited set of property constraints. Here, we present MatterGen, a model that generates stable, diverse inorganic materials across the periodic table and can further be fine-tuned to steer the generation towards a broad range of property constraints. To enable this, we introduce a new diffusion-based generative process that produces crystalline structures by gradually refining atom types, coordinates, and the periodic lattice. We further introduce adapter modules to enable fine-tuning towards any given property constraints with a labeled dataset. Compared to prior generative models, structures produced by MatterGen are more than twice as likely to be novel and stable, and more than 15 times closer to the local energy minimum. After fine-tuning, MatterGen successfully generates stable, novel materials with desired chemistry, symmetry, as well as mechanical, electronic and magnetic properties. Finally, we demonstrate multi-property materials design capabilities by proposing structures that have both high magnetic density and a chemical composition with low supply-chain risk. We believe that the quality of generated materials and the breadth of MatterGen's capabilities represent a major advancement towards creating a universal generative model for materials design.

相關內容

由 Google Deisgn 創造的跨平臺設計系統。

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.

One problem with researching cognitive modeling and reinforcement learning (RL) is that researchers spend too much time on setting up an appropriate computational framework for their experiments. Many open source implementations of current RL algorithms exist, but there is a lack of a modular suite of tools combining different robotic simulators and platforms, data visualization, hyperparameter optimization, and baseline experiments. To address this problem, we present Scilab-RL, a software framework for efficient research in cognitive modeling and reinforcement learning for robotic agents. The framework focuses on goal-conditioned reinforcement learning using Stable Baselines 3 and the OpenAI gym interface. It enables native possibilities for experiment visualizations and hyperparameter optimization. We describe how these features enable researchers to conduct experiments with minimal time effort, thus maximizing research output.

We present an approach for the data-driven modeling of nonlinear viscoelastic materials at small strains which is based on physics-augmented neural networks (NNs) and requires only stress and strain paths for training. The model is built on the concept of generalized standard materials and is therefore thermodynamically consistent by construction. It consists of a free energy and a dissipation potential, which can be either expressed by the components of their tensor arguments or by a suitable set of invariants. The two potentials are described by fully/partially input convex neural networks. For training of the NN model by paths of stress and strain, an efficient and flexible training method based on a recurrent cell, particularly a long short-term memory cell, is developed to automatically generate the internal variable(s) during the training process. The proposed method is benchmarked and thoroughly compared with existing approaches. These include a method that obtains the internal variable by integrating the evolution equation over the entire sequence, while the other method uses an an auxiliary feedforward neural network for the internal variable(s). Databases for training are generated by using a conventional nonlinear viscoelastic reference model, where 3D and 2D plane strain data with either ideal or noisy stresses are generated. The coordinate-based and the invariant-based formulation are compared and the advantages of the latter are demonstrated. Afterwards, the invariant-based model is calibrated by applying the three training methods using ideal or noisy stress data. All methods yield good results, but differ in computation time and usability for large data sets. The presented training method based on a recurrent cell turns out to be particularly robust and widely applicable and thus represents a promising approach for the calibration of other types of models as well.

Pre-trained on a large and diverse dataset, the segment anything model (SAM) is the first promptable foundation model in computer vision aiming at object segmentation tasks. In this work, we evaluate SAM for the task of nuclear instance segmentation performance with zero-shot learning and finetuning. We compare SAM with other representative methods in nuclear instance segmentation, especially in the context of model generalisability. To achieve automatic nuclear instance segmentation, we propose using a nuclei detection model to provide bounding boxes or central points of nu-clei as visual prompts for SAM in generating nuclear instance masks from histology images.

Inequality measures are quantitative measures that take values in the unit interval, with a zero value characterizing perfect equality. Although originally proposed to measure economic inequalities, they can be applied to several other situations, in which one is interested in the mutual variability between a set of observations, rather than in their deviations from the mean. While unidimensional measures of inequality, such as the Gini index, are widely known and employed, multidimensional measures, such as Lorenz Zonoids, are difficult to interpret and computationally expensive and, for these reasons, are not much well known. To overcome the problem, in this paper we propose a new scaling invariant multidimensional inequality index, based on the Fourier transform, which exhibits a number of interesting properties, and whose application to the multidimensional case is rather straightforward to calculate and interpret.

Speech foundation models (SFMs) have been benchmarked on many speech processing tasks, often achieving state-of-the-art performance with minimal adaptation. However, the SFM paradigm has been significantly less explored for applications of interest to the speech perception community. In this paper we present a systematic evaluation of 10 SFMs on one such application: Speech intelligibility prediction. We focus on the non-intrusive setup of the Clarity Prediction Challenge 2 (CPC2), where the task is to predict the percentage of words correctly perceived by hearing-impaired listeners from speech-in-noise recordings. We propose a simple method that learns a lightweight specialized prediction head on top of frozen SFMs to approach the problem. Our results reveal statistically significant differences in performance across SFMs. Our method resulted in the winning submission in the CPC2, demonstrating its promise for speech perception applications.

The privacy in classical federated learning can be breached through the use of local gradient results by using engineered queries from the clients. However, quantum communication channels are considered more secure because the use of measurements in the data causes some loss of information, which can be detected. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an $N$ dimensional data vector through a quantum channel requires sending $\log N$ entangled qubits, which can provide exponential efficiency if the data vector is obtained as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.

Skew normal model suffers from inferential drawbacks, namely singular Fisher information in the vicinity of symmetry and diverging of maximum likelihood estimation. To address the above drawbacks, Azzalini and Arellano-Valle (2013) introduced maximum penalised likelihood estimation (MPLE) by subtracting a penalty function from the log-likelihood function with a pre-specified penalty coefficient. Here, we propose a cross-validated MPLE to improve its performance when the underlying model is close to symmetry. We develop a theory for MPLE, where an asymptotic rate for the cross-validated penalty coefficient is derived. We further show that the proposed cross-validated MPLE is asymptotically efficient under certain conditions. In simulation studies and a real data application, we demonstrate that the proposed estimator can outperform the conventional MPLE when the model is close to symmetry.

北京阿比特科技有限公司