亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) is a privacy-preserving paradigm, allowing edge devices to learn collaboratively without sharing data. Edge devices like Alexa and Siri are prospective sources of unlabeled audio data that can be tapped to learn robust audio representations. In this work, we bring Self-supervised Learning (SSL) and FL together to learn representations for Automatic Speech Recognition respecting data privacy constraints. We use the speaker and chapter information in the unlabeled speech dataset, Libri-Light, to simulate non-IID speaker-siloed data distributions and pre-train an LSTM encoder with the Contrastive Predictive Coding framework with FedSGD. We show that the pre-trained ASR encoder in FL performs as well as a centrally pre-trained model and produces an improvement of 12-15% (WER) compared to no pre-training. We further adapt the federated pre-trained models to a new language, French, and show a 20% (WER) improvement over no pre-training.

相關內容

Scientific research is increasingly reliant on computational methods, posing challenges for ensuring research reproducibility. This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms for reproducibility from a cyber security standpoint to address the security challenges associated with AI research. Using this framework, five popular AI reproducibility platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed. The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures essential for robust reproducibility. Kaggle and Codalab, however, performed better in terms of implementing cyber security measures covering aspects like security, privacy, usability, and trust. Consequently, the study provides tailored recommendations for different user scenarios, including individual researchers, small laboratories, and large corporations. It emphasizes the importance of integrating specific cyber security features into AI platforms to address the challenges associated with AI reproducibility, ultimately advancing reproducibility in this field. Moreover, the proposed framework can be applied beyond AI platforms, serving as a versatile tool for evaluating a wide range of systems and applications from a cyber security perspective.

While the design of blind image quality assessment (IQA) algorithms has improved significantly, the distribution shift between the training and testing scenarios often leads to a poor performance of these methods at inference time. This motivates the study of test time adaptation (TTA) techniques to improve their performance at inference time. Existing auxiliary tasks and loss functions used for TTA may not be relevant for quality-aware adaptation of the pre-trained model. In this work, we introduce two novel quality-relevant auxiliary tasks at the batch and sample levels to enable TTA for blind IQA. In particular, we introduce a group contrastive loss at the batch level and a relative rank loss at the sample level to make the model quality aware and adapt to the target data. Our experiments reveal that even using a small batch of images from the test distribution helps achieve significant improvement in performance by updating the batch normalization statistics of the source model.

IC3 is a famous bit-level framework for safety verification. By incorporating datapath abstraction, a notable enhancement in the efficiency of hardware verification can be achieved. However, datapath abstraction entails a coarse level of abstraction where all datapath operations are approximated as uninterpreted functions. This level of abstraction, albeit useful, can lead to an increased computational burden during the verification process as it necessitates extensive exploration of redundant abstract state space. In this paper, we introduce a novel approach called datapath propagation. Our method involves leveraging concrete constant values to iteratively compute the outcomes of relevant datapath operations and their associated uninterpreted functions. Meanwhile, we generate potentially useful datapath propagation lemmas in abstract state space and tighten the datapath abstraction. With this technique, the abstract state space can be reduced, and the verification efficiency is significantly improved. We implemented the proposed approach and conducted extensive experiments. The results show promising improvements of our approach compared to the state-of-the-art verifiers.

Dueling bandits are widely used to model preferential feedback prevalent in many applications such as recommendation systems and ranking. In this paper, we study the Borda regret minimization problem for dueling bandits, which aims to identify the item with the highest Borda score while minimizing the cumulative regret. We propose a rich class of generalized linear dueling bandit models, which cover many existing models. We first prove a regret lower bound of order $\Omega(d^{2/3} T^{2/3})$ for the Borda regret minimization problem, where $d$ is the dimension of contextual vectors and $T$ is the time horizon. To attain this lower bound, we propose an explore-then-commit type algorithm for the stochastic setting, which has a nearly matching regret upper bound $\tilde{O}(d^{2/3} T^{2/3})$. We also propose an EXP3-type algorithm for the adversarial linear setting, where the underlying model parameter can change at each round. Our algorithm achieves an $\tilde{O}(d^{2/3} T^{2/3})$ regret, which is also optimal. Empirical evaluations on both synthetic data and a simulated real-world environment are conducted to corroborate our theoretical analysis.

Diffusion models (DMs) have recently been introduced in image deblurring and exhibited promising performance, particularly in terms of details reconstruction. However, the diffusion model requires a large number of inference iterations to recover the clean image from pure Gaussian noise, which consumes massive computational resources. Moreover, the distribution synthesized by the diffusion model is often misaligned with the target results, leading to restrictions in distortion-based metrics. To address the above issues, we propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring. Specifically, we perform the DM in a highly compacted latent space to generate the prior feature for the deblurring process. The deblurring process is implemented by a regression-based method to obtain better distortion accuracy. Meanwhile, the highly compact latent space ensures the efficiency of the DM. Furthermore, we design the hierarchical integration module to fuse the prior into the regression-based model from multiple scales, enabling better generalization in complex blurry scenarios. Comprehensive experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods. Code and trained models are available at //github.com/zhengchen1999/HI-Diff.

Image recognition is a classic and common task in the computer vision field, which has been widely applied in the past decade. Most existing methods in literature aim to learn discriminative features from labeled images for classification, however, they generally neglect confounders that infiltrate into the learned features, resulting in low performances for discriminating test images. To address this problem, we propose a Recursive Counterfactual Deconfounding model for object recognition in both closed-set and open-set scenarios based on counterfactual analysis, called RCD. The proposed model consists of a factual graph and a counterfactual graph, where the relationships among image features, model predictions, and confounders are built and updated recursively for learning more discriminative features. It performs in a recursive manner so that subtler counterfactual features could be learned and eliminated progressively, and both the discriminability and generalization of the proposed model could be improved accordingly. In addition, a negative correlation constraint is designed for alleviating the negative effects of the counterfactual features further at the model training stage. Extensive experimental results on both closed-set recognition task and open-set recognition task demonstrate that the proposed RCD model performs better than 11 state-of-the-art baselines significantly in most cases.

Bilinear based models are powerful and widely used approaches for Knowledge Graphs Completion (KGC). Although bilinear based models have achieved significant advances, these studies mainly concentrate on posterior properties (based on evidence, e.g. symmetry pattern) while neglecting the prior properties. In this paper, we find a prior property named "the law of identity" that cannot be captured by bilinear based models, which hinders them from comprehensively modeling the characteristics of KGs. To address this issue, we introduce a solution called Unit Ball Bilinear Model (UniBi). This model not only achieves theoretical superiority but also offers enhanced interpretability and performance by minimizing ineffective learning through minimal constraints. Experiments demonstrate that UniBi models the prior property and verify its interpretability and performance.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司